[1] Aharoni, A., Gaidukov, L., Khersonsky, O., Mc, Q.G.S., Roodveldt, C., and Tawfik, D.S. (2005). The 'evolvability' of promiscuous protein functions.
Nat Genet 37, 73-76 .
[2] Bartlam, M., Wang, G., Yang, H., Gao, R., Zhao, X., Xie, G., Cao, S., Feng, Y., and Rao, Z. (2004). Crystal structure of an acylpeptide hydrolase/esterase from
Aeropyrum pernix K1.
Structure 12, 1481-1488
10.1016/j.str.2004.05.019.
[3] Gao, R., Feng, Y., Ishikawa, K., Ishida, H., Ando, S., Kosugi, Y., and Cao, S. (2003). Cloning, purification and properties of a hyperthermophilic esterase from archaeon
Aeropyrum pernix K1.
J Mol Catal, B Enzym 24-25, 1-8
10.1016/S1381-1177(03)00064-X.
[4] Ho, B.K., and Gruswitz, F. (2008). HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures.
BMC Struct Biol 8, 49
10.1186/1472-6807-8-49.
[5] Houde, A., Kademi, A., and Leblanc, D. (2004). Lipases and their industrial applications: an overview.
Appl Biochem Biotechnol 118, 155-170
10.1385/ABAB:118:1-3:155.
[6] Hult, K., and Berglund, P. (2007). Enzyme promiscuity: mechanism and applications.
Trends Biotechnol 25, 231-238
10.1016/j.tibtech.2007.03.002.
[7] Imanaka, T., and Atomi, H. (2002). Catalyzing "hot" reactions: enzymes from hyperthermophilic Archaea.
Chem Rec 2, 149-163
10.1002/tcr.10023.
[8] Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures.
J Appl Cryst 26, 283-291
10.1107/S0021889892009944.
[9] Luetz, S., Giver, L., and Lalonde, J. (2008). Engineered enzymes for chemical production.
Biotechnol Bioeng 101, 647-653
10.1002/bit.22077.
[10] Luthy, R., Bowie, J.U., and Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles.
Nature 356, 83-85
10.1038/356083a0.
[11] Madigan, M.T., and Martinko, J.M. (2006). Brock Biology of Microorganisms, 11th ed.
Beijing:
Science Press.
[12] Mandrich, L., Manco, G., Rossi, M., Floris, E., Jansen-van den Bosch, T., Smit, G., and Wouters, J.A. (2006). Alicyclobacillus acidocaldarius thermophilic esterase EST2's activity in milk and cheese models.
Appl Environ Microbiol 72, 3191-3197
10.1128/AEM.72.5.3191-3197.2006.
[13] Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000). Comparative protein structure modeling of genes and genomes.
Annu Rev Biophys Biomol Struct 29, 291-325 .
[14] Martínez, L., Andrade, R., Birgin, E.G., and Martinez, J.M. (2009). PACKMOL: a package for building initial configurations for molecular dynamics simulations.
J Comput Chem 30, 2157-2164
10.1002/jcc.21224.
[15] Morley, K.L., and Kazlauskas, R.J. (2005). Improving enzyme properties: when are closer mutations better?
Trends Biotechnol 23, 231-237
10.1016/j.tibtech.2005.03.005.
[16] Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999). Extremophiles as a source of novel enzymes for industrial application.
Appl Microbiol Biotechnol 51, 711-729
10.1007/s002530051456.
[17] O'Brien, P.J., and Herschlag, D. (1999). Catalytic promiscuity and the evolution of new enzymatic activities.
Chem Biol 6, R91-R105
10.1016/S1074-5521(99)80033-7.
[18] Paramesvaran, J., Hibbert, E.G., Russell, A.J., and Dalby, P.A. (2009). Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
Protein Eng Des Sel 22, 401-411
10.1093/protein/gzp020.
[19] Rui, L., Kwon, Y.M., Fishman, A., Reardon, K.F., and Wood, T.K. (2004). Saturation mutagenesis of toluene ortho-monooxygenase of
Burkholderia cepacia G4 for Enhanced 1-naphthol synthesis and chloroform degradation.
Appl Environ Microbiol 70, 3246-3252
10.1128/AEM.70.6.3246-3252.2004.
[20] Salameh, M., and Wiegel, J. (2007). Lipases from extremophiles and potential for industrial applications.
Adv Appl Microbiol 61, 253-283
10.1016/S0065-2164(06)61007-1.
[21] Schuttelkopf, A.W., and van Aalten, D.M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes.
Acta Crystallogr D Biol Crystallogr 60, 1355-1363
10.1107/S0907444904011679.
[22] Soares, C.M., Teixeira, V.H., and Baptista, A.M. (2003). Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies.
Biophys J 84, 1628-1641
10.1016/S0006-3495(03)74972-8.
[23] Stahl, M., Jeppsson-Wistrand, U., Mansson, M.O., and Mosbach, K. (1991). Induced stereo- and substrate selectivity of bioimprinted α-chymotrypsin in anhydrous organic media.
J Am Chem Soc 113, 9366-9368
10.1021/ja00024a051.
[24] Tawaki, S., and Klibanov, A.M. (1992). Inversion of enzyme enantioselectivity mediated by the solvent.
J Am Chem Soc 114, 1882-1884
10.1021/ja00031a054.
[25] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J. (2005). GROMACS: fast, flexible, and free.
J Comput Chem 26, 1701-1718
10.1002/jcc.20291.
[26] Vartanian, J.P., Henry, M., and Wain-Hobson, S. (2001). Simulating pseudogene evolution in vitro: determining the true number of mutations in a lineage.
Proc Natl Acad Sci USA 98, 13172-13176
10.1073/pnas.221334898.
[27] Verma, M.L., Azmi, W., and Kanwar, S.S. (2008). Microbial lipases: at the interface of aqueous and non-aqueous media. A review.
Acta Microbiol Immunol Hung 55, 265-294
10.1556/AMicr.55.2008.3.1.
[28] Wang, Q., Yang, G., Liu, Y., and Feng, Y. (2006). Discrimination of esterase and peptidase activities of acylaminoacyl peptidase from hyperthermophilic
Aeropyrum pernix K1 by a single mutation.
J Biol Chem 281, 18618-18625
10.1074/jbc.M601015200.
[29] Wescott, C.R., and Klibanov, A.M. (1993). Solvent variation inverts substrate specificity of an enzyme.
J Am Chem Soc 115, 1629-1631
10.1021/ja00058a002.
[30] Yang, G., Bai, A., Gao, L., Zhang, Z., Zheng, B., and Feng, Y. (2009). Glu88 in the non-catalytic domain of acylpeptide hydrolase plays dual roles: charge neutralization for enzymatic activity and formation of salt bridge for thermodynamic stability.
Biochim Biophys Acta 1794, 94-102 .
[31] Yang, L., Dordick, J.S., and Garde, S. (2004). Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
Biophys J 87, 812-821
10.1529/biophysj.104.041269.
[32] Zaks, A., and Klibanov, A.M. (1985). Enzyme-catalyzed processes in organic solvents.
Proc Natl Acad Sci USA 82, 3192-3196
10.1073/pnas.82.10.3192.
[33] Zheng, L., Baumann, U., and Reymond, J.L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol.
Nucleic Acids Res 32, e115
10.1093/nar/gnh110.