A structural view of the antibiotic degradation enzyme NDM-1 from a superbug

Yu Guo1,3, Jing Wang1,3, Guojun Niu1,3, Wenqing Shui1,3, Yuna Sun4, Honggang Zhou1,3, Yaozhou Zhang1, Cheng Yang1,3, Zhiyong Lou2(), Zihe Rao1,2,3,4()

PDF(746 KB)
PDF(746 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (5) : 384-394. DOI: 10.1007/s13238-011-1055-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A structural view of the antibiotic degradation enzyme NDM-1 from a superbug

  • Yu Guo1,3, Jing Wang1,3, Guojun Niu1,3, Wenqing Shui1,3, Yuna Sun4, Honggang Zhou1,3, Yaozhou Zhang1, Cheng Yang1,3, Zhiyong Lou2(), Zihe Rao1,2,3,4()
Author information +
History +

Abstract

Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are a type of newly discovered antibiotic-resistant bacteria. The rapid pandemic spread of NDM-1 bacteria worldwide (spreading to India, Pakistan, Europe, America, and Chinese Taiwan) in less than 2 months characterizes these microbes as a potentially major global health problem. The drug resistance of NDM-1 bacteria is largely due to plasmids containing the blaNDM-1 gene shuttling through bacterial populations. The NDM-1 enzyme encoded by the blaNDM-1 gene hydrolyzes β-lactam antibiotics, allowing the bacteria to escape the action of antibiotics. Although the biological functions and structural features of NDM-1 have been proposed according to results from functional and structural investigation of its homologues, the precise molecular characteristics and mechanism of action of NDM-1 have not been clarified. Here, we report the three-dimensional structure of NDM-1 with two catalytic zinc ions in its active site. Biological and mass spectroscopy results revealed that D-captopril can effectively inhibit the enzymatic activity of NDM-1 by binding to its active site with high binding affinity. The unique features concerning the primary sequence and structural conformation of the active site distinguish NDM-1 from other reported metallo-β-lactamases (MBLs) and implicate its role in wide spectrum drug resistance. We also discuss the molecular mechanism of NDM-1 action and its essential role in the pandemic of drug-resistant NDM-1 bacteria. Our results will provide helpful information for future drug discovery targeting drug resistance caused by NDM-1 and related metallo-β-lactamases.

Keywords

New Delhi metallo-β-lactamase 1 (NDM-1) / drug resistance / crystal structure / drug discovery

Cite this article

Download citation ▾
Yu Guo, Jing Wang, Guojun Niu, Wenqing Shui, Yuna Sun, Honggang Zhou, Yaozhou Zhang, Cheng Yang, Zhiyong Lou, Zihe Rao. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Prot Cell, 2011, 2(5): 384‒394 https://doi.org/10.1007/s13238-011-1055-9

References

[1] Abraham, E.P., and Chain, E. (1988). An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10, 677–678 .3055168
[2] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948–1954 .12393927
[3] Antony, J., Gresh, N., Olsen, L., Hemmingsen, L., Schofield, C.J., and Bauer, R. (2002). Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem 23, 1281–1296 .12210153
[4] Baiden, F., Owusu-Agyei, S., Webster, J., and Chandramohan, D. (2010). The need for new antibiotics. Lancet 375, 637–638 .20171396
[5] Bauernfeind, A., Chong, Y., and Lee, K. (1998). Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J 39, 520–525 .10097678
[6] Bebrone, C. (2007). Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 74, 1686–1701 .17597585
[7] Carfi, A., Pares, S., Duée, E., Galleni, M., Duez, C., Frère, J.M., and Dideberg, O. (1995). The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J 14, 4914–4921 .7588620
[8] Chihara, S., Okuzumi, K., Yamamoto, Y., Oikawa, S., and Hishinuma, A. (2011). First case of New Delhi metallo-beta-lactamase 1-producing Escherichia coli infection in Japan. Clin Infect Dis 52, 153–154 .21148536
[9] Concha, N.O., Janson, C.A., Rowling, P., Pearson, S., Cheever, C.A., Clarke, B.P., Lewis, C., Galleni, M., Frère, J.M., Payne, D.J., (2000). Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39, 4288–4298 .10757977
[10] Daiyasu, H., Osaka, K., Ishino, Y., and Toh, H. (2001). Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 503, 1–6 .11513844
[11] DeLano, W. (2002). The PyMOL Molecular Graphics System. San Carlos , CA: DeLano Scientific.
[12] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 .15572765
[13] Garau, G., Bebrone, C., Anne, C., Galleni, M., Frère, J.M., and Dideberg, O. (2005). A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 345, 785–795 .15588826
[14] Garcia-Saez, I., Docquier, J.D., Rossolini, G.M., and Dideberg, O. (2008). The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol 375, 604–611 .18061205
[15] García-Saez, I., Hopkins, J., Papamicael, C., Franceschini, N., Amicosante, G., Rossolini, G.M., Galleni, M., Frère, J.M., and Dideberg, O. (2003a). The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. J Biol Chem 278, 23868–23873 .12684522
[16] García-Sáez, I., Mercuri, P.S., Papamicael, C., Kahn, R., Frère, J.M., Galleni, M., Rossolini, G.M., and Dideberg, O. (2003b). Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol 325, 651–660 .12507470
[17] Heddini, A., Cars, O., Qiang, S., and Tomson, G. (2009). Antibiotic resistance in China—a major future challenge. Lancet 373, 30.19121722
[18] Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60, 2256–2268 .15572779
[19] Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., Irfan, S., (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10, 597–602 .20705517
[20] Laskowski, R., MacArthur, M., Moss, D., and Thornton, J. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283–291 .
[21] Lassaux, P., Hamel, M., Gulea, M., Delbrück, H., Mercuri, P.S., Horsfall, L., Dehareng, D., Kupper, M., Frère, J.M., Hoffmann, K., (2010). Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-beta-lactamases. J Med Chem 53, 4862–4876 .20527888
[22] Livermore, D.M. (2009). Has the era of untreatable infections arrived? J Antimicrob Chemother 64, i29–i36 .19675016
[23] Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491–497 .5700707
[24] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658–674 .19461840
[25] Moali, C., Anne, C., Lamotte-Brasseur, J., Groslambert, S., Devreese, B., Van Beeumen, J., Galleni, M., and Frère, J.M. (2003). Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Chem Biol 10, 319–329 .12725860
[26] Moellering, R.C. Jr. (2010). NDM-1—a cause for worldwide concern. N Engl J Med 363, 2377–2379 .21158655
[27] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In: Macromolecular Crystallography, part A . Carter C.W. Jr., and Sweet R.M., eds. New York: Academic Press. 307–326 .
[28] Sabbath, L.D., and Abraham, E.P. (1966) Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J 98, 11c–13c .
[29] Shimada, A., Ishikawa, H., Nakagawa, N., Kuramitsu, S., and Masui, R. (2010). The first crystal structure of an archaeal metallo-beta-lactamase superfamily protein; ST1585 from Sulfolobus tokodaii. Proteins 78, 2399–2402 .20544975
[30] Struelens, M.J., Monnet, D.L., Magiorakos, A.P., Santos O’Connor, F., and Giesecke, J., and the European NDM-1 Survey Participants. (2010). New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill 15, pii=19716.21144431
[31] Walsh, T.R. (2010). Emerging carbapenemases: a global perspective. Int J Antimicrob Agents 36, S8–S14 .21129630
[32] Walsh, T.R., Weeks, J., Livermore, D.M., and Toleman, M.A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11, 355–362
[33] Yong, D., Toleman, M.A., Giske, C.G., Cho, H.S., Sundman, K., Lee, K., and Walsh, T.R. (2009). Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53, 5046–5054 .19770275
AI Summary AI Mindmap
PDF(746 KB)

Accesses

Citations

Detail

Sections
Recommended

/