Retinoic acid inducible gene-I, more than a virus sensor

Feng Liu, Jun Gu()

PDF(133 KB)
PDF(133 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (5) : 351-357. DOI: 10.1007/s13238-011-1045-y
MINI-REVIEW
MINI-REVIEW

Retinoic acid inducible gene-I, more than a virus sensor

  • Feng Liu, Jun Gu()
Author information +
History +

Abstract

Retinoic acid inducible gene-I (RIG-I) is a caspase recruitment domain (CARD) containing protein that acts as an intracellular RNA receptor and senses virus infection. After binding to double stranded RNA (dsRNA) or 5′-triphosphate single stranded RNA (ssRNA), RIG-I transforms into an open conformation, translocates onto mitochondria, and interacts with the downstream adaptor mitochondrial antiviral signaling (MAVS) to induce the production of type I interferon and inflammatory factors via IRF3/7 and NF-κB pathways, respectively. Recently, accumulating evidence suggests that RIG-I could function in non-viral systems and participate in a series of biological events, such as inflammation and inflammation related diseases, cell proliferation, apoptosis and even senescence. Here we review recent advances in antiviral study of RIG-I as well as the functions of RIG-I in other fields.

Keywords

retinoic acid inducible gene-I (RIG-I) / antiviral signaling / inflammation / innate immunity

Cite this article

Download citation ▾
Feng Liu, Jun Gu. Retinoic acid inducible gene-I, more than a virus sensor. Prot Cell, 2011, 2(5): 351‒357 https://doi.org/10.1007/s13238-011-1045-y

References

[1] Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104, 7500–7505 .17460044
[2] Besch, R., Poeck, H., Hohenauer, T., Senft, D., H?cker, G., Berking, C., Hornung, V., Endres, S., Ruzicka, T., Rothenfusser, S., (2009). Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119, 2399–2411 .19620789
[3] Coppé, J.P., Patil, C.K., Rodier, F., Sun, Y., Mu?oz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6, 2853–2868 .19053174
[4] Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z.J., (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141, 483–496 .20434986
[5] Cui, S., Eisen?cher, K., Kirchhofer, A., Brzózka, K., Lammens, A., Lammens, K., Fujita, T., Conzelmann, K.K., Krug, A., and Hopfner, K.P. (2008). The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29, 169–179 .18243112
[6] Cui, X.F., Imaizumi, T., Yoshida, H., Borden, E.C., and Satoh, K. (2004). Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates the expression of interferon-gamma stimulated gene 15 in MCF-7 cells. Biochem Cell Biol 82, 401–405 .15181474
[7] Friedman, C.S., O’Donnell, M.A., Legarda-Addison, D., Ng, A., Cárdenas, W.B., Yount, J.S., Moran, T.M., Basler, C.F., Komuro, A., Horvath, C.M., (2008). The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9, 930–936 .18636086
[8] Gack, M.U., Nistal-Villán, E., Inn, K.S., García-Sastre, A., and Jung, J.U. (2010). Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol 84, 3220–3229 .20071582
[9] Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 .17392790
[10] Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R.A., Diamond, M.S., and Colonna, M. (2006). Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103, 8459–8464 .16714379
[11] Hatakeyama, M., Imaizumi, T., Terasaki, F., Mori, F., Tanji, K., Sato, F., Kijima, H., Suma, H., Wakabayashi, K., Yoshida, H., (2007). Interferon-gamma upregulates retinoic acid-inducible gene-I in human pericardial mesothelial cells. Acta Cardiol 62, 553–557 .18214119
[12] Hayakawa, S., Shiratori, S., Yamato, H., Kameyama, T., Kitatsuji, C., Kashigi, F., Goto, S., Kameoka, S., Fujikura, D., Yamada, T., (2011). ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol 12, 37–44 .21102435
[13] Hornung, V., Ellegast, J., Kim, S., Brzózka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M., (2006). 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 .17038590
[14] Huang, J., Liu, T., Xu, L.G., Chen, D., Zhai, Z., and Shu, H.B. (2005). SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3- and virus-triggered IRF-3 activation pathways. EMBO J 24, 4018–4028 .16281057
[15] Imaizumi, T., Aratani, S., Nakajima, T., Carlson, M., Matsumiya, T., Tanji, K., Ookawa, K., Yoshida, H., Tsuchida, S., McIntyre, T.M., (2002). Retinoic acid-inducible gene-I is induced in endothelial cells by LPS and regulates expression of COX-2. Biochem Biophys Res Commun 292, 274–279 .11890704
[16] Imaizumi, T., Arikawa, T., Sato, T., Uesato, R., Matsumiya, T., Yoshida, H., Ueno, M., Yamasaki, S., Nakajima, T., Hirashima, M., (2008). Involvement of retinoic acid-inducible gene-I in inflammation of rheumatoid fibroblast-like synoviocytes. Clin Exp Immunol 153, 240–244 .18505427
[17] Imaizumi, T., Hatakeyama, M., Yamashita, K., Yoshida, H., Ishikawa, A., Taima, K., Satoh, K., Mori, F., and Wakabayashi, K. (2004a). Interferon-gamma induces retinoic acid-inducible gene-I in endothelial cells. Endothelium 11, 169–173 .15370293
[18] Imaizumi, T., Kumagai, M., Taima, K., Fujita, T., Yoshida, H., and Satoh, K. (2005). Involvement of retinoic acid-inducible gene-I in the IFN-gamma/STAT1 signalling pathway in BEAS-2B cells. Eur Respir J 25, 1077–1083 .15929965
[19] Imaizumi, T., Matsumiya, T., Yoshida, H., Naraoka, T., Uesato, R., Ishibashi, Y., Ota, K., Toh, S., Fukuda, S., and Satoh, K. (2009). Tumor-necrosis factor-alpha induces retinoic acid-inducible gene-I in rheumatoid fibroblast-like synoviocytes. Immunol Lett 122, 89–93 .19126414
[20] Imaizumi, T., Tanaka, H., Tajima, A., Tsuruga, K., Oki, E., Sashinami, H., Matsumiya, T., Yoshida, H., Inoue, I., and Ito, E. (2010). Retinoic acid-inducible gene-I (RIG-I) is induced by IFN-gamma in human mesangial cells in culture: possible involvement of RIG-I in the inflammation in lupus nephritis. Lupus 19, 830–836 .20167631
[21] Imaizumi, T., Yagihashi, N., Hatakeyama, M., Yamashita, K., Ishikawa, A., Taima, K., Yoshida, H., Inoue, I., Fujita, T., Yagihashi, S., (2004b). Expression of retinoic acid-inducible gene-I in vascular smooth muscle cells stimulated with interferon-gamma. Life Sci 75, 1171–1180 .15219805
[22] Imaizumi, T., Yagihashi, N., Hatakeyama, M., Yamashita, K., Ishikawa, A., Taima, K., Yoshida, H., Yagihashi, S., and Satoh, K. (2004c). Upregulation of retinoic acid-inducible gene-I in T24 urinary bladder carcinoma cells stimulated with interferon-gamma. Tohoku J Exp Med 203, 313–318 .15297736
[23] Imaizumi, T., Yagihashi, N., Kubota, K., Yoshida, H., Sakaki, H., Yagihashi, S., Kimura, H., and Satoh, K. (2007). Expression of retinoic acid-inducible gene-I (RIG-I) in macrophages: possible involvement of RIG-I in atherosclerosis. J Atheroscler Thromb 14, 51–55 .17485888
[24] Inn, K.S., Gack, M.U., Tokunaga, F., Shi, M., Wong, L.Y., Iwai, K., and Jung, J.U. (2011). Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol Cell 41, 354–365 .21292167
[25] Ishikawa, H., and Barber, G.N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 .18724357
[26] Jia, Y., Song, T., Wei, C., Ni, C., Zheng, Z., Xu, Q., Ma, H., Li, L., Zhang, Y., He, X., (2009). Negative regulation of MAVS-mediated innate immune response by PSMA7. J Immunol 183, 4241–4248 .19734229
[27] Jiang, L.J., Zhang, N.N., Ding, F., Li, X.Y., Chen, L., Zhang, H.X., Zhang, W., Chen, S.J., Wang, Z.G., Li, J.M., (2011). RA-inducible gene-I induction augments STAT1 activation to inhibit leukemia cell proliferation. Proc Natl Acad Sci U S A 108, 1897–1902 .21224412
[28] Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104, 14050–14055 .17709747
[29] Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O., (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 .16039576
[30] Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 .16625202
[31] Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981–988 .16127453
[32] Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O’Rourke, K.M., Eby, M., Pietras, E., Cheng, G., Bazan, J.F., (2007). DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 .17991829
[33] Kitamura, H., Matsuzaki, Y., Kimura, K., Nakano, H., Imaizumi, T., Satoh, K., and Hanada, K. (2007). Cytokine modulation of retinoic acid-inducible gene-I (RIG-I) expression in human epidermal keratinocytes. J Dermatol Sci 45, 127–134 .17182220
[34] Komuro, A., and Horvath, C.M. (2006). RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 80, 12332–12342 .17020950
[35] Kong, L., Sun, L., Zhang, H., Liu, Q., Liu, Y., Qin, L., Shi, G., Hu, J.H., Xu, A., Sun, Y.P., (2009). An essential role for RIG-I in toll-like receptor-stimulated phagocytosis. Cell Host Microbe 6, 150–161 .19683681
[36] Kubota, K., Sakaki, H., Imaizumi, T., Nakagawa, H., Kusumi, A., Kobayashi, W., Satoh, K., and Kimura, H. (2006). Retinoic acid-inducible gene-I is induced in gingival fibroblasts by lipopolysaccharide or poly IC: possible roles in interleukin-1beta, -6 and -8 expression. Oral Microbiol Immunol 21, 399–406 .17064399
[37] Lin, R., Lacoste, J., Nakhaei, P., Sun, Q., Yang, L., Paz, S., Wilkinson, P., Julkunen, I., Vitour, D., Meurs, E., (2006). Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol 80, 6072–6083 .16731946
[38] Liu, F., Wu, S., Ren, H., and Gu, J. (2011). Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol 13, 254–262 .21336305
[39] Liu, T.X., Zhang, J.W., Tao, J., Zhang, R.B., Zhang, Q.H., Zhao, C.J., Tong, J.H., Lanotte, M., Waxman, S., Chen, S.J., (2000). Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood 96, 1496–1504 .10942397
[40] Matikainen, S., Sirén, J., Tissari, J., Veckman, V., Pirhonen, J., Severa, M., Sun, Q., Lin, R., Meri, S., Uzé, G., (2006). Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J Virol 80, 3515–3522 .16537619
[41] Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454, 428–435 .18650913
[42] Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 .16177806
[43] Mi, Z., Fu, J., Xiong, Y., and Tang, H. (2010). SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell 1, 275–283 .21203974
[44] Mibayashi, M., Martínez-Sobrido, L., Loo, Y.M., Cárdenas, W.B., Gale, M. Jr, and García-Sastre, A. (2007). Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81, 514–524 .17079289
[45] Moore, C.B., Bergstralh, D.T., Duncan, J.A., Lei, Y., Morrison, T.E., Zimmermann, A.G., Accavitti-Loper, M.A., Madden, V.J., Sun, L., Ye, Z., (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 .18200010
[46] Nistal-Villán, E., Gack, M.U., Martínez-Delgado, G., Maharaj, N.P., Inn, K.S., Yang, H., Wang, R., Aggarwal, A.K., Jung, J.U., and García-Sastre, A. (2010). Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production. J Biol Chem 285, 20252–20261 .20406818
[47] Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284, 807–817 .19017631
[48] Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., and Seya, T. (2010). The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8, 496–509 .21147464
[49] Pan, M., Geng, S., Xiao, S., Ren, J., Liu, Y., Li, X., Li, Z., and Peng, Z. (2009). Apoptosis induced by synthetic retinoic acid CD437 on human melanoma A375 cells involves RIG-I pathway. Arch Dermatol Res 301, 15–20 .18936944
[50] Peng, S., Geng, J., Sun, R., Tian, Z., and Wei, H. (2009). Polyinosinic-polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the up-regulation of RIG-I like receptors. Cancer Sci 100, 529–536 .19154402
[51] Pichlmair, A., Schulz, O., Tan, C.P., N?slund, T.I., Liljestr?m, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 .17038589
[52] Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 .9851930
[53] Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale, M. Jr. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104, 582–587 .17190814
[54] Saitoh, T., Yamamoto, M., Miyagishi, M., Taira, K., Nakanishi, M., Fujita, T., Akira, S., Yamamoto, N., and Yamaoka, S. (2005). A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol 174, 1507–1512 .15661910
[55] Sakaki, H., Imaizumi, T., Matsumiya, T., Kusumi, A., Nakagawa, H., Kubota, K., Nishi, N., Nakamura, T., Hirashima, M., Satoh, K., (2005). Retinoic acid-inducible gene-I is induced by interleukin-1beta in cultured human gingival fibroblasts. Oral Microbiol Immunol 20, 47–50 .15612946
[56] Sanada, T., Takaesu, G., Mashima, R., Yoshida, R., Kobayashi, T., and Yoshimura, A. (2008). FLN29 deficiency reveals its negative regulatory role in the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like helicase signaling pathway. J Biol Chem 283, 33858–33864 .18849341
[57] Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., and Takeuchi, O. (2010). LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107, 1512–1517 .20080593
[58] Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682 .16125763
[59] Su, Z.Z., Sarkar, D., Emdad, L., Barral, P.M., and Fisher, P.B. (2007). Central role of interferon regulatory factor-1 (IRF-1) in controlling retinoic acid inducible gene-I (RIG-I) expression. J Cell Physiol 213, 502–510 .17516545
[60] Sumpter, R. Jr, Loo, Y.M., Foy, E., Li, K., Yoneyama, M., Fujita, T., Lemon, S.M., and Gale, M. Jr. (2005). Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79, 2689–2699 .15708988
[61] Sun, Z., Ren, H., Liu, Y., Teeling, J.L., and Gu, J. (2011). Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J Virol 85, 1036–1047 .21068236
[62] Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M. Jr, Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29, 428–440 .18242112
[63] Tsugawa, K., Oki, E., Suzuki, K., Imaizumi, T., Ito, E., and Tanaka, H. (2008). Expression of mRNA for functional molecules in urinary sediment in glomerulonephritis. Pediatr Nephrol 23, 395–401 .18095005
[64] Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y., and Barber, G.N. (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178, 6444–6455 .17475874
[65] Wallden, B., Emond, M., Swift, M.E., Disis, M.L., and Swisshelm, K. (2005). Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells. BMC Cancer 5, 140.16255778
[66] Wang, J., Wu, S., Jin, X., Li, M., Chen, S., Teeling, J.L., Perry, V.H., and Gu, J. (2008). Retinoic acid-inducible gene-I mediates late phase induction of TNF-alpha by lipopolysaccharide. J Immunol 180, 8011–8019 .18523264
[67] Wang, Y., Zhang, H.X., Sun, Y.P., Liu, Z.X., Liu, X.S., Wang, L., Lu, S.Y., Kong, H., Liu, Q.L., Li, X.H., (2007). Rig-I-/- mice develop colitis associated with downregulation of G alpha i2. Cell Res 17, 858–868 .17893708
[68] W?rnle, M., Sauter, M., Kastenmüller, K., Ribeiro, A., Roeder, M., Mussack, T., Ladurner, R., and Sitter, T. (2009). Role of viral induced vascular endothelial growth factor (VEGF) production in pleural effusion and malignant mesothelioma. Cell Biol Int 33, 180–186 .18996210
[69] Xu, L., Xiao, N., Liu, F., Ren, H., and Gu, J. (2009). Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria. Proc Natl Acad Sci U S A 106, 1530–1535 .19164550
[70] Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19, 727–740 .16153868
[71] Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M. Jr, Akira, S., (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175, 2851–2858 .16116171
[72] Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730–737 .15208624
[73] Yoshida, H., Imaizumi, T., Lee, S.J., Tanji, K., Sakaki, H., Matsumiya, T., Ishikawa, A., Taima, K., Yuzawa, E., Mori, F., (2007). Retinoic acid-inducible gene-I mediates RANTES/CCL5 expression in U373MG human astrocytoma cells stimulated with double-stranded RNA. Neurosci Res 58, 199–206 .17395328
[74] Yuzawa, E., Imaizumi, T., Matsumiya, T., Yoshida, H., Fukuhara, R., Kimura, H., Fukui, A., Tanji, K., Mori, F., Wakabayashi, K., (2008). Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates CXCL11 expression in HeLa cells. Life Sci 82, 670–675 .18258269
[75] Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 .20403326
[76] Zhang, M., Wu, X., Lee, A.J., Jin, W., Chang, M., Wright, A., Imaizumi, T., and Sun, S.C. (2008a). Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem 283, 18621–18626 .18467330
[77] Zhang, N.N., Shen, S.H., Jiang, L.J., Zhang, W., Zhang, H.X., Sun, Y.P., Li, X.Y., Huang, Q.H., Ge, B.X., Chen, S.J., (2008b). RIG-I plays a critical role in negatively regulating granulocytic proliferation. Proc Natl Acad Sci U S A 105, 10553–10558 .18650396
[78] Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 .18818105
AI Summary AI Mindmap
PDF(133 KB)

Accesses

Citations

Detail

Sections
Recommended

/