CSN1 inhibits c-Jun phosphorylation and down-regulates ectopic expression of JNK1

Tomohiko Tsuge1,4(), Suchithra Menon2, Yingchun Tong3, Ning Wei1

PDF(424 KB)
PDF(424 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (5) : 423-432. DOI: 10.1007/s13238-011-1043-0
RESEARCH ARTICLE
RESEARCH ARTICLE

CSN1 inhibits c-Jun phosphorylation and down-regulates ectopic expression of JNK1

  • Tomohiko Tsuge1,4(), Suchithra Menon2, Yingchun Tong3, Ning Wei1
Author information +
History +

Abstract

CSN1 is a component of the COP9 signalosome (CSN), a conserved protein complex with pleiotropic functions in many organs and cell types. CSN regulates ubiquitin-proteasome dependent protein degradation via the deneddylation and the associated deubiquitination activities. In addition, CSN associates with protein kinases and modulates cell signaling, particularly the activator protein 1 (AP-1) pathway. We have shown previously that CSN1 suppresses AP-1 transcription activity and inhibits ultraviolet (UV) and serum activation of c-fos expression. Here we show that CSN1 can inhibit phosphorylation of proto-oncogene c-Jun product and repress c-Jun dependent transcription. Further, CSN1 dramatically down-regulates ectopic expression of c-Jun N-terminal kinase 1 (JNK1) in cultured cells. The decline in JNK1 is not caused by excessive proteolysis or by 3′ UTR-dependent mRNA instability, but by CSN1-dependent repression of one or multiple steps in transcriptional and post-transcriptional mechanisms. Thus, in contrast to CSN5/Jab1, which promotes AP-1 activity, CSN1 displays a negative effect on the AP-1 pathway. Finally, we discuss about the dynamic equilibrium of the CSN complexes in regulation of the AP-1 pathway.

Keywords

activator protein 1 (AP-1) / c-Jun phosphorylation / COP9 signalosome (CSN) / CSN1/GPS1 / c-Jun N-terminal kinase 1 (JNK1)

Cite this article

Download citation ▾
Tomohiko Tsuge, Suchithra Menon, Yingchun Tong, Ning Wei. CSN1 inhibits c-Jun phosphorylation and down-regulates ectopic expression of JNK1. Prot Cell, 2011, 2(5): 423‒432 https://doi.org/10.1007/s13238-011-1043-0

References

[1] Adler, A.S., Lin, M., Horlings, H., Nuyten, D.S., van de Vijver, M.J., and Chang, H.Y. (2006). Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 38, 421-430 .16518402
[2] Adler, A.S., Littlepage, L.E., Lin, M., Kawahara, T.L., Wong, D.J., Werb, Z., and Chang, H.Y. (2008). CSN5 isopeptidase activity links COP9 signalosome activation to breast cancer progression. Cancer Res 68, 506-515 .18199546
[3] Chamovitz, D.A. (2009). Revisiting the COP9 signalosome as a transcriptional regulator. EMBO Rep 10, 352-358 .19305390
[4] Claret, F.X., Hibi, M., Dhut, S., Toda, T., and Karin, M. (1996). A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383, 453-457 .8837781
[5] Cope, G.A., and Deshaies, R.J. (2003). COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663-671 .14505567
[6] Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252 .11057897
[7] Dérijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R.J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025-1037 .8137421
[8] Fuertes, G., Villarroya, A., and Knecht, E. (2003). Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions. Int J Biochem Cell Biol 35, 651-664 .12672457
[9] Fukumoto, A., Tomoda, K., Kubota, M., Kato, J.Y., and Yoneda-Kato, N. (2005). Small Jab1-containing subcomplex is regulated in an anchorage- and cell cycle-dependent manner, which is abrogated by ras transformation. FEBS Lett 579, 1047-1054 .15710389
[10] Grosset, C., Chen, C.Y., Xu, N., Sonenberg, N., Jacquemin-Sablon, H., and Shyu, A.B. (2000). A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103, 29-40 .11051545
[11] Gusmaroli, G., Feng, S., and Deng, X.W. (2004). The Arabidopsis CSN5A and CSN5B subunits are present in distinct COP9 signalosome complexes, and mutations in their JAMM domains exhibit differential dominant negative effects on development. Plant Cell 16, 2984-3001 .15486099
[12] Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270, 16483-16486 .7622446
[13] Kwok, S.F., Solano, R., Tsuge, T., Chamovitz, D.A., Ecker, J.R., Matsui, M., and Deng, X.W. (1998). Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 10, 1779-1790 .9811788
[14] Lemm, I., and Ross, J. (2002). Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol Cell Biol 22, 3959-3969 .12024010
[15] Liu, C., Powell, K.A., Mundt, K., Wu, L., Carr, A.M., and Caspari, T. (2003). Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms. Genes Dev 17, 1130-1140 .12695334
[16] Maniatis, T., and Reed, R. (2002). An extensive network of coupling among gene expression machines. Nature 416, 499-506 .11932736
[17] Menon, S., Chi, H., Zhang, H., Deng, X.W., Flavell, R.A., and Wei, N. (2007). COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence. Nat Immunol 8, 1236-1245 .17906629
[18] Menon, S., Tsuge, T., Dohmae, N., Takio, K., and Wei, N. (2008). Association of SAP130/SF3b-3 with Cullin-RING ubiquitin ligase complexes and its regulation by the COP9 signalosome. BMC Biochem 9, 1.18173839
[19] Mundt, K.E., Porte, J., Murray, J.M., Brikos, C., Christensen, P.U., Caspari, T., Hagan, I.M., Millar, J.B., Simanis, V., Hofmann, K., (1999). The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. Curr Biol 9, 1427-1430 .10607571
[20] Naumann, M., Bech-Otschir, D., Huang, X., Ferrell, K., and Dubiel, W. (1999). COP9 signalosome-directed c-Jun activation/stabilization is independent of JNK. J Biol Chem 274, 35297-35300 .10585392
[21] Pick, E., Hofmann, K., and Glickman, M.H. (2009). PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol Cell 35, 260-264 .19683491
[22] Pollmann, C., Huang, X., Mall, J., Bech-Otschir, D., Naumann, M., and Dubiel, W. (2001). The constitutive photomorphogenesis 9 signalosome directs vascular endothelial growth factor production in tumor cells. Cancer Res 61, 8416-8421 .11731421
[23] Prokipcak, R.D., Herrick, D.J., and Ross, J. (1994). Purification and properties of a protein that binds to the C-terminal coding region of human c-myc mRNA. J Biol Chem 269, 9261-9269 .8132663
[24] Seglen, P.O., and Gordon, P.B. (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79, 1889-1892 .6952238
[25] Spain, B.H., Bowdish, K.S., Pacal, A.R., Staub, S.F., Koo, D., Chang, C.Y., Xie, W., and Colicelli, J. (1996). Two human cDNAs, including a homolog of Arabidopsis FUS6 (COP11), suppress G-protein- and mitogen-activated protein kinase-mediated signal transduction in yeast and mammalian cells. Mol Cell Biol 16, 6698-6706 .8943324
[26] Su, H., Huang, W., and Wang, X. (2009). The COP9 signalosome negatively regulates proteasome proteolytic function and is essential to transcription. Int J Biochem Cell Biol 41, 615-624 .18706515
[27] Sun, Y., Wilson, M.P., and Majerus, P.W. (2002). Inositol 1,3,4-trisphosphate 5/6-kinase associates with the COP9 signalosome by binding to CSN1. J Biol Chem 277, 45759-45764 .12324474
[28] Tomoda, K., Kato, J.Y., Tatsumi, E., Takahashi, T., Matsuo, Y., and Yoneda-Kato, N. (2005). The Jab1/COP9 signalosome subcomplex is a downstream mediator of Bcr-Abl kinase activity and facilitates cell-cycle progression. Blood 105, 775-783 .15353483
[29] Tsuge, T., Matsui, M., and Wei, N. (2001). The subunit 1 of the COP9 signalosome suppresses gene expression through its N-terminal domain and incorporates into the complex through the PCI domain. J Mol Biol 305, 1-9 .11114242
[30] Uhle, S., Medalia, O., Waldron, R., Dumdey, R., Henklein, P., Bech-Otschir, D., Huang, X., Berse, M., Sperling, J., Schade, R., (2003). Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J 22, 1302-1312 .12628923
[31] Ullah, Z., Buckley, M.S., Arnosti, D.N., and Henry, R.W. (2007). Retinoblastoma protein regulation by the COP9 signalosome. Mol Biol Cell 18, 1179-1186 .17251548
[32] Wang, X., Kang, D., Feng, S., Serino, G., Schwechheimer, C., and Wei, N. (2002). CSN1 N-terminal-dependent activity is required for Arabidopsis development but not for Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9 signalosome. Mol Biol Cell 13, 646-655 .11854419
[33] Wei, N., and Deng, X.W. (2003). The COP9 signalosome. Annu Rev Cell Dev Biol 19, 261-286 .14570571
[34] Wei, N., Serino, G., and Deng, X.W. (2008). The COP9 signalosome: more than a protease. Trends Biochem Sci 33, 592-600 .18926707
[35] Wilson, M.P., Sun, Y., Cao, L., and Majerus, P.W. (2001). Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2. J Biol Chem 276, 40998-41004 .11533064
[36] Wolf, D.A., Zhou, C., and Wee, S. (2003). The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat Cell Biol 5, 1029-1033 .14647295
[37] Yang, X., Menon, S., Lykke-Andersen, K., Tsuge, T., Di Xiao, Wang, X., Rodriguez-Suarez, R.J., Zhang, H., and Wei, N. (2002). The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr Biol 12, 667-672 .11967155
[38] Yoneda-Kato, N., Tomoda, K., Umehara, M., Arata, Y., and Kato, J.Y. (2005). Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J 24, 1739-1749 .15861129
AI Summary AI Mindmap
PDF(424 KB)

Accesses

Citations

Detail

Sections
Recommended

/