Activation and maturation of SARS-CoV main protease

Bin Xia(), Xue Kang

PDF(636 KB)
PDF(636 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (4) : 282-290. DOI: 10.1007/s13238-011-1034-1
REVIEW
REVIEW

Activation and maturation of SARS-CoV main protease

  • Bin Xia(), Xue Kang
Author information +
History +

Abstract

The worldwide outbreak of the severe acute respiratory syndrome (SARS) in 2003 was due to the transmission of SARS coronavirus (SARS-CoV). The main protease (Mpro) of SARS-CoV is essential for the viral life cycle, and is considered to be an attractive target of anti-SARS drug development. As a key enzyme for proteolytic processing of viral polyproteins to produce functional non-structure proteins, Mpro is first auto-cleaved out of polyproteins. The monomeric form of Mpro is enzymatically inactive, and it is activated through homo-dimerization which is strongly affected by extra residues to both ends of the mature enzyme. This review provides a summary of the related literatures on the study of the quaternary structure, activation, and self-maturation of Mpro over the past years.

Keywords

severe acute respiratory syndrome / Mpro / structure / dimerization

Cite this article

Download citation ▾
Bin Xia, Xue Kang. Activation and maturation of SARS-CoV main protease. Prot Cell, 2011, 2(4): 282‒290 https://doi.org/10.1007/s13238-011-1034-1

References

[1] Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., and Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300, 1763-1767 .12746549
[2] Barrila, J., Bacha, U., and Freire, E. (2006). Long-range cooperative interactions modulate dimerization in SARS 3CLpro. Biochemistry 45, 14908-14916 .17154528
[3] Chan, H.L., Tsui, S.K., and Sung, J.J. (2003). Coronavirus in severe acute respiratory syndrome (SARS). Trends Mol Med 9, 323-325 .12928031
[4] Chang, H.P., Chou, C.Y., and Chang, G.G. (2007). Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride. Biophys J 92, 1374-1383 .17142288
[5] Chen, H., Wei, P., Huang, C., Tan, L., Liu, Y., and Lai, L. (2006). Only one protomer is active in the dimer of SARS 3C-like proteinase. J Biol Chem 281, 13894-13898 .16565086
[6] Chen, S., Chen, L., Tan, J., Chen, J., Du, L., Sun, T., Shen, J., Chen, K., Jiang, H., and Shen, X. (2005). Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations. J Biol Chem 280, 164-173 .15507456
[7] Chen, S., Hu, T., Zhang, J., Chen, J., Chen, K., Ding, J., Jiang, H., and Shen, X. (2008a). Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease: crystal structure with molecular dynamics simulations. J Biol Chem 283, 554-564 .17977841
[8] Chen, S., Jonas, F., Shen, C., and Higenfeld, R. (2010). Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell 1, 59-74 .21203998
[9] Chen, S., Zhang, J., Hu, T.C., Chen, K.X., Jiang, H.L., and Shen, X. (2008b). Residues on the dimer interface of SARS coronavirus 3C-like protease: dimer stability characterization and enzyme catalytic activity analysis. J Biochem 143, 525-536 .18182387
[10] Cheng, S.C., Chang, G.G., and Chou, C.Y. (2010). Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophys J 98, 1327-1336 .20371333
[11] Chou, C.Y., Chang, H.C., Hsu, W.C., Lin, T.Z., Lin, C.H., and Chang, G.G. (2004). Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease. Biochemistry 43, 14958-14970 .15554703
[12] Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J., (2004). Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 279, 1637-1642 .14561748
[13] Graziano, V., McGrath, W.J., DeGruccio, A.M., Dunn, J.J., and Mangel, W.F. (2006a). Enzymatic activity of the SARS coronavirus main proteinase dimer. FEBS Lett 580, 2577-2583 .16647061
[14] Graziano, V., McGrath, W.J., Yang, L., and Mangel, W.F. (2006b). SARS CoV main proteinase: The monomer-dimer equilibrium dissociation constant. Biochemistry 45, 14632-14641 .17144656
[15] Grum-Tokars, V., Ratia, K., Begaye, A., Baker, S.C., and Mesecar, A.D. (2008). Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery. Virus Res 133, 63-73
[16] Hsu, M.F., Kuo, C.J., Chang, K.T., Chang, H.C., Chou, C.C., Ko, T.P., Shr, H.L., Chang, G.G., Wang, A.H., and Liang, P.H. (2005a). Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 280, 31257-31266 .15788388
[17] Hsu, W.C., Chang, H.C., Chou, C.Y., Tsai, P.J., Lin, P.I., and Chang, G.G. (2005b). Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease. J Biol Chem 280, 22741-22748 .15831489
[18] Hu, T., Zhang, Y., Li, L., Wang, K., Chen, S., Chen, J., Ding, J., Jiang, H., and Shen, X. (2009). Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure. Virology 388, 324-334 .19409595
[19] Seipelt, J., Guarne, A., Bergmann, E., James, M., Sommergruber, W., Fita, I., and Skern, T., (1999). The structures of picornaviral proteinases. Virus Res 62, 159–168 .
[20] Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., and Snijder, E.J. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6, e226.18798692
[21] Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., de Jong, T., van Doornum, G., Lim, W., (2003). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263-270 .12892955
[22] Kuo, C.J., Chi, Y.H., Hsu, J.T., and Liang, P.H. (2004). Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem Biophys Res Commun 318, 862-867 .15147951
[23] Leng, Q., and Bentwich, Z. (2003). A novel coronavirus and SARS. N Engl J Med 349, 709.12917313
[24] Li, C., Qi, Y., Teng, X., Yang, Z., Wei, P., Zhang, C., Tan, L., Zhou, L., Liu, Y., and Lai, L. (2010). Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase. J Biol Chem 285, 28134-28140 .20489209
[25] Lin, C.W., Tsai, C.H., Tsai, F.J., Chen, P.J., Lai, C.C., Wan, L., Chiu, H.H., and Lin, K.H. (2004). Characterization of trans- and cis-cleavage activity of the SARS coronavirus 3CLpro protease: basis for the in vitro screening of anti-SARS drugs. FEBS Lett 574, 131-137 .15358553
[26] Lin, P.Y., Chou, C.Y., Chang, H.C., Hsu, W.C., and Chang, G.G. (2008). Correlation between dissociation and catalysis of SARS-CoV main protease. Arch Biochem Biophys 472, 34-42 .18275836
[27] Perlman, S., and Netland, J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7, 439-450 .19430490
[28] Seipelt, J., Guarné, A., Bergmann, E., James, M., Sommergruber, W., Fita, I., and Skern, T. (1999). The structures of picornaviral proteinases. Virus Res 62, 159-168 .10507325
[29] Shan, Y.F., Li, S.F., and Xu, G.J. (2004). A novel auto-cleavage assay for studying mutational effects on the active site of severe acute respiratory syndrome coronavirus 3C-like protease. Biochem Biophys Res Commun 324, 579-583 .15474466
[30] Shi, J., Sivaraman, J., and Song, J. (2008). Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. J Virol 82, 4620-4629 .18305031
[31] Shi, J., and Song, J. (2006). The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J 273, 1035-1045 .16478476
[32] Shi, J., Wei, Z., and Song, J. (2004). Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. J Biol Chem 279, 24765-24773 .15037623
[33] Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J., and Gorbalenya, A.E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991-1004 .12927536
[34] Tan, J., Verschueren, K.H., Anand, K., Shen, J., Yang, M., Xu, Y., Rao, Z., Bigalke, J., Heisen, B., Mesters, J.R., (2005). pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J Mol Biol 354, 25-40 .16242152
[35] Wei, P., Fan, K., Chen, H., Ma, L., Huang, C., Tan, L., Xi, D., Li, C., Liu, Y., Cao, A., (2006). The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun 339, 865-872 .16329994
[36] Wei, P., Li, C.M., Zhou, L., Liu, Y., and Lai, L.H. (2010). Substrate Binding and Homo Dimerization of SARS 3CL Proteinase are Mutual Allosteric Effectors. Acta Phys Chim Sin 26, 5.
[37] Xu, T., Ooi, A., Lee, H.C., Wilmouth, R., Liu, D.X., and Lescar, J. (2005). Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer. Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 964-966 .16511208
[38] Xue, X., Yang, H., Shen, W., Zhao, Q., Li, J., Yang, K., Chen, C., Jin, Y., Bartlam, M., and Rao, Z. (2007). Production of authentic SARS-CoV M(pro) with enhanced activity: application as a novel tag-cleavage endopeptidase for protein overproduction. J Mol Biol 366, 965-975 .17189639
[39] Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3, e324.16128623
[40] Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100, 13190-13195 .14585926
[41] Zhang, S.N., Zhong, N., Xue, F., Kang, X., Ren, X.B., Jin, C.W., Lou, Z.Y., and Xia, B. (2010). Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease. Protein Cell 1, 371-383 .
[42] Zhong, N., Zhang, S., Xue, F., Kang, X., Zou, P., Chen, J., Liang, C., Rao, Z., Jin, C., Lou, Z., (2009). C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer. Protein Sci 18, 839-844 .19319935
[43] Zhong, N., Zhang, S., Zou, P., Chen, J., Kang, X., Li, Z., Liang, C., Jin, C., and Xia, B. (2008). Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain. J Virol 82, 4227-4234 .18305043
[44] Ziebuhr, J., Snijder, E.J., and Gorbalenya, A.E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853-879 .10725411
AI Summary AI Mindmap
PDF(636 KB)

Accesses

Citations

Detail

Sections
Recommended

/