A simplified method for reconstituting active E. coli DNA polymerase III

Shi-Qiang Lin1,3, Li-Jun Bi1(), Xian-En Zhang2()

PDF(142 KB)
PDF(142 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (4) : 303-307. DOI: 10.1007/s13238-011-1032-3
COMMUNICATION
COMMUNICATION

A simplified method for reconstituting active E. coli DNA polymerase III

  • Shi-Qiang Lin1,3, Li-Jun Bi1(), Xian-En Zhang2()
Author information +
History +

Abstract

Genome duplication in E. coli is carried out by DNA polymerase III, an enzyme complex consisting of ten subunits. Investigations of the biochemical and structural properties of DNA polymerase III require the expression and purification of subunits including α, ?, θ, γ, δ′, δ, and β separately followed by in vitro reconstitution of the pol III core and clamp loader. Here we propose a new method for expressing and purifying DNA polymerase III components by utilizing a protein co-expression strategy. Our results show that the subunits of the pol III core and those of the clamp loader can be co-expressed and purified based on inherent interactions between the subunits. The resulting pol III core, clamp loader and sliding clamp can be reconstituted effectively to perform DNA polymerization. Our strategy considerably simplifies the expression and purification of DNA polymerase III and provides a feasible and convenient method for exploring other multi-subunit systems.

Keywords

E. coli / DNA polymerase III / coexpression / purification

Cite this article

Download citation ▾
Shi-Qiang Lin, Li-Jun Bi, Xian-En Zhang. A simplified method for reconstituting active E. coli DNA polymerase III. Prot Cell, 2011, 2(4): 303‒307 https://doi.org/10.1007/s13238-011-1032-3

References

[1] Bruck, I., Georgescu, R.E., and O’Donnell, M. (2005). Conserved interactions in the Staphylococcus aureus DNA PolC chromosome replication machine. J Biol Chem 280, 18152-18162 .15647255
[2] Bruck, I., and O’Donnell, M. (2000). The DNA replication machine of a gram-positive organism. J Biol Chem 275, 28971-28983 .10878011
[3] Bruck, I., Yuzhakov, A., Yurieva, O., Jeruzalmi, D., Skangalis, M., Kuriyan, J., and O’Donnell, M. (2002). Analysis of a multicomponent thermostable DNA polymerase III replicase from an extreme thermophile. J Biol Chem 277, 17334-17348 .11859073
[4] Bullard, J.M., Williams, J.C., Acker, W.K., Jacobi, C., Janjic, N., and McHenry, C.S. (2002). DNA polymerase III holoenzyme from Thermus thermophilus identification, expression, purification of components, and use to reconstitute a processive replicase. J Biol Chem 277, 13401-13408 .11823461
[5] Horiuchi, T., Maki, H., and Sekiguchi, M. (1978). A new conditional lethal mutator (dnaQ49) in Escherichia coli K12. Mol Gen Genet 163, 277-283 .355854
[6] Johnson, A., and O’Donnell, M. (2005). Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74, 283-315 .15952889
[7] Kunkel, T.A. (1985). The mutational specificity of DNA polymerase-beta during in vitro DNA synthesis. Production of frameshift, base substitution, and deletion mutations. J Biol Chem 260, 5787-5796 .3988773
[8] Li, F., Liu, Q., Chen, Y.Y., Yu, Z.N., Zhang, Z.P., Zhou, Y.F., Deng, J.Y., Bi, L.J., and Zhang, X.E. (2008). Escherichia coli mismatch repair protein MutL interacts with the clamp loader subunits of DNA polymerase III. Mutat Res 637, 101-110 .17765269
[9] Naktinis, V., Onrust, R., Fang, L., and O’Donnell, M. (1995). Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. J Biol Chem 270, 13358-13365 .7768937
[10] Onrust, R., Finkelstein, J., Naktinis, V., Turner, J., Fang, L., and O’Donnell, M. (1995a). Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem 270, 13348-13357 .7768936
[11] Onrust, R., Finkelstein, J., Turner, J., Naktinis, V., and O’Donnell, M. (1995b). Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. III. Interface between two polymerases and the clamp loader. J Biol Chem 270, 13366-13377 .7768938
[12] Strauss, B., Kelly, K., Dincman, T., Ekiert, D., Biesieda, T., and Song, R. (2004). Cell death in Escherichia coli dnaE(Ts) mutants incubated at a nonpermissive temperature is prevented by mutation in the cydA gene. J Bacteriol 186, 2147-2155 .15028700
[13] Stukenberg, P.T., and O’Donnell, M. (1995). Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. V. Four different polymerase-clamp complexes on DNA. J Biol Chem 270, 13384-13391 .7768940
[14] Tolia, N.H., and Joshua-Tor, L. (2006). Strategies for protein coexpression in Escherichia coli. Nat Methods 3, 55-64 .16369554
[15] Wechsler, J.A., and Gross, J.D. (1971). Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet 113, 273-284 .4946856
[16] Xiao, H., Naktinis, V., and O’Donnell, M. (1995). Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. IV. ATP-binding site mutants identify the clamp loader. J Biol Chem 270, 13378-13383 .7768939
AI Summary AI Mindmap
PDF(142 KB)

Accesses

Citations

Detail

Sections
Recommended

/