Directed hepatic differentiation from embryonic stem cells

Xuesong Chen1, Fanyi Zeng1,2()

PDF(334 KB)
PDF(334 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (3) : 180-188. DOI: 10.1007/s13238-011-1023-4
REVIEW
REVIEW

Directed hepatic differentiation from embryonic stem cells

  • Xuesong Chen1, Fanyi Zeng1,2()
Author information +
History +

Abstract

The liver is the largest internal organ in mammals, and is important for the maintenance of normal physiological functions of other tissues and organs. Hepatitis, cirrhosis, liver cancer and other chronic liver diseases are serious threats to human health, and these problems are compounded by a scarcity of liver donors for transplantation therapies. Directed differentiation of embryonic stem cells to liver cells is a promising strategy for obtaining hepatocytes that can be used for cell transplantation. In vitro hepatocyte differentiation of embryonic stem cells requires a profound understanding of normal development during embryonic hepatogenesis. Here we provide a simple description of hepatogenesis in vivo and discuss directed differentiation of embryonic stem cells into hepatocytes in vitro.

Keywords

stem cell differentiation / liver development / signaling pathway

Cite this article

Download citation ▾
Xuesong Chen, Fanyi Zeng. Directed hepatic differentiation from embryonic stem cells. Prot Cell, 2011, 2(3): 180‒188 https://doi.org/10.1007/s13238-011-1023-4

References

[1] Agarwal, S., Holton, K.L., and Lanza, R. (2008). Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 26, 1117–1127 .18292207
[2] Ameri, J., St?hlberg, A., Pedersen, J., Johansson, J.K., Johannesson, M.M., Artner, I., and Semb, H. (2010). FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells 28, 45–56 .19890880
[3] Asahina, K., Fujimori, H., Shimizu-Saito, K., Kumashiro, Y., Okamura, K., Tanaka, Y., Teramoto, K., Arii, S., and Teraoka, H. (2004). Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 9, 1297–1308 .15569160
[4] Basma, H., Soto-Gutiérrez, A., Yannam, G.R., Liu, L., Ito, R., Yamamoto, T., Ellis, E., Carson, S.D., Sato, S., Chen, Y., (2009). Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136, 990–999 .19026649
[5] Beddington, R.S., and Smith, J.C. (1993). Control of vertebrate gastrulation: inducing signals and responding genes. Curr Opin Genet Dev 3, 655–661 .8241775
[6] Burke, Z., and Oliver, G. (2002). Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech Dev 118, 147–155 .12351178
[7] Calmont, A., Wandzioch, E., Tremblay, K.D., Minowada, G., Kaestner, K.H., Martin, G.R., and Zaret, K.S. (2006). An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell 11, 339–348 .16950125
[8] Capo-Chichi, C.D., Smedberg, J.L., Rula, M., Nicolas, E., Yeung, A.T., Adamo, R.F., Frolov, A., Godwin, A.K., and Xu, X.X. (2010). Alteration of Differentiation Potentials by Modulating GATA Transcription Factors in Murine Embryonic Stem Cells. Stem Cells Int 2010, 602068.21048850
[9] Chen, W.S., Manova, K., Weinstein, D.C., Duncan, S.A., Plump, A.S., Prezioso, V.R., Bachvarova, R.F., and Darnell, J.E. Jr. (1994). Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 8, 2466–2477 .7958910
[10] Chinzei, R., Tanaka, Y., Shimizu-Saito, K., Hara, Y., Kakinuma, S., Watanabe, M., Teramoto, K., Arii, S., Takase, K., Sato, C., (2002). Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 36, 22–29 .12085345
[11] Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M., and Zaret, K.S. (2002). Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9, 279–289 .11864602
[12] Conlon, F.L., Lyons, K.M., Takaesu, N., Barth, K.S., Kispert, A., Herrmann, B., and Robertson, E.J. (1994). A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928 .7924997
[13] D’Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., and Baetge, E.E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23, 1534–1541 .16258519
[14] Dessimoz, J., Opoka, R., Kordich, J.J., Grapin-Botton, A., and Wells, J.M. (2006). FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 123, 42–55 .16326079
[15] Douarin, N.M. (1975). An experimental analysis of liver development. Med Biol 53, 427–455 .765644
[16] Dudas, J., Elmaouhoub, A., Mansuroglu, T., Batusic, D., Tron, K., Saile, B., Papoutsi, M., Pieler, T., Wilting, J., and Ramadori, G. (2006). Prospero-related homeobox 1 (Prox1) is a stable hepatocyte marker during liver development, injury and regeneration, and is absent from “oval cells”. Histochem Cell Biol 126, 549–562 .16770575
[17] Fair, J.H., Cairns, B.A., Lapaglia, M., Wang, J., Meyer, A.A., Kim, H., Hatada, S., Smithies, O., and Pevny, L. (2003). Induction of hepatic differentiation in embryonic stem cells by co-culture with embryonic cardiac mesoderm. Surgery 134, 189–196 .12947317
[18] Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., and Parkin, D.M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893–2917 .
[19] Gasperowicz, M., and Natale, D.R. (2010). Establishing Three Blastocyst Lineages—Then What? Biol Reprod . [Epub ahead of print]21123814
[20] Gómez-Lechón, M.J. (1999). Oncostatin M: signal transduction and biological activity. Life Sci 65, 2019–2030 .10579456
[21] Grapin-Botton, A. (2005). Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin's PhD thesis. Int J Dev Biol 49, 335–347 .
[22] Hay, D.C., Zhao, D., Fletcher, J., Hewitt, Z.A., McLean, D., Urruticoechea-Uriguen, A., Black, J.R., Elcombe, C., Ross, J.A., Wolf, R., (2008). Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26, 894–902 .18238852
[23] Hayhurst, G.P., Strick-Marchand, H., Mulet, C., Richard, A.F., Morosan, S., Kremsdorf, D., and Weiss, M.C. (2008). Morphogenetic competence of HNF4 alpha-deficient mouse hepatic cells. J Hepatol 49, 384–395 .18617288
[24] Houssaint, E. (1980). Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ 9, 269–279 .7438211
[25] Ishii, T., Yasuchika, K., Fujii, H., Hoppo, T., Baba, S., Naito, M., Machimoto, T., Kamo, N., Suemori, H., Nakatsuji, N., (2005). In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Exp Cell Res 309, 68–77 .16009362
[26] Ishii, T., Yasuchika, K., Fukumitsu, K., Kawamoto, T., Kawamura-Saitoh, M., Amagai, Y., Ikai, I., Uemoto, S., Kawase, E., Suemori, H., (2010). In vitro hepatic maturation of human embryonic stem cells by using a mesenchymal cell line derived from murine fetal livers. Cell Tissue Res 339, 505–512 .20041263
[27] Jochheim, A., Hillemann, T., Kania, G., Scharf, J., Attaran, M., Manns, M.P., Wobus, A.M., and Ott, M. (2004). Quantitative gene expression profiling reveals a fetal hepatic phenotype of murine ES-derived hepatocytes. Int J Dev Biol 48, 23–29 .15005571
[28] Jung, J., Zheng, M., Goldfarb, M., and Zaret, K.S. (1999). Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998–2003 .10373120
[29] Kamiya, A., Kinoshita, T., Ito, Y., Matsui, T., Morikawa, Y., Senba, E., Nakashima, K., Taga, T., Yoshida, K., Kishimoto, T., (1999). Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18, 2127–2136 .10205167
[30] Kamiya, A., Kinoshita, T., and Miyajima, A. (2001). Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 492, 90–94 .11248243
[31] Keng, V.W., Yagi, H., Ikawa, M., Nagano, T., Myint, Z., Yamada, K., Tanaka, T., Sato, A., Muramatsu, I., Okabe, M., (2000). Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem Biophys Res Commun 276, 1155–1161 .11027604
[32] Kojima, N., Kinoshita, T., Kamiya, A., Nakamura, K., Nakashima, K., Taga, T., and Miyajima, A. (2000). Cell density-dependent regulation of hepatic development by a gp130-independent pathway. Biochem Biophys Res Commun 277, 152–158 .11027656
[33] Kuai, X.L., Cong, X.Q., Li, X.L., and Xiao, S.D. (2003). Generation of hepatocytes from cultured mouse embryonic stem cells. Liver Transpl 9, 1094–1099 .14526405
[34] Kubo, A., Kim, Y.H., Irion, S., Kasuda, S., Takeuchi, M., Ohashi, K., Iwano, M., Dohi, Y., Saito, Y., Snodgrass, R., (2010). The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm. Hepatology 51, 633–641 .20063280
[35] Kubo, A., Shinozaki, K., Shannon, J.M., Kouskoff, V., Kennedy, M., Woo, S., Fehling, H.J., and Keller, G. (2004). Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 .14998924
[36] Kumashiro, Y., Teramoto, K., Shimizu-Saito, K., Asahina, K., Teraoka, H., and Arii, S. (2005). Isolation of hepatocyte-like cells from mouse embryoid body cells. Transplant Proc 37, 299–300 .15808625
[37] Kung, J.W., Currie, I.S., Forbes, S.J., and Ross, J.A. (2010). Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol 2010, 984248.20169172
[38] Lade, A.G., and Monga, S.P. (2010). Beta-catenin signaling in hepatic development and progenitors: Which way does the WNT blow? Dev Dyn Dec23. [Epub ahead of print].10.1002/dvdy.22522
[39] Lemaigre, F., and Zaret, K.S. (2004). Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev 14, 582–590 .15380251
[40] Matsumoto, K., and Nakamura, T. (1992). Hepatocyte growth factor: molecular structure, roles in liver regeneration, and other biological functions. Crit Rev Oncog 3, 27–54 .1312869
[41] Medlock, E.S., and Haar, J.L. (1983). The liver hemopoietic environment: I. Developing hepatocytes and their role in fetal hemopoiesis. Anat Rec 207, 31–41 .6638531
[42] Miyajima, A., Kinoshita, T., Tanaka, M., Kamiya, A., Mukouyama, Y., and Hara, T. (2000). Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev 11, 177–183 .10817961
[43] Moore-Scott, B.A., Opoka, R., Lin, S.C., Kordich, J.J., and Wells, J.M. (2007). Identification of molecular markers that are expressed in discrete anterior-posterior domains of the endoderm from the gastrula stage to mid-gestation. Dev Dyn 236, 1997–2003 .17576135
[44] Morrisey, E.E., Tang, Z., Sigrist, K., Lu, M.M., Jiang, F., Ip, H.S., and Parmacek, M.S. (1998). GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12, 3579–3590 .9832509
[45] Nejak-Bowen, K., and Monga, S.P. (2008). Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis 4, 92–99 .19279720
[46] Paranjpe, S., Bowen, W.C., Bell, A.W., Nejak-Bowen, K., Luo, J.H., and Michalopoulos, G.K. (2007). Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference. Hepatology 45, 1471–1477 .17427161
[47] Rambhatla, L., Chiu, C.P., Kundu, P., Peng, Y., and Carpenter, M.K. (2003). Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12, 1–11 .12693659
[48] Reiter, J.F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N., and Stainier, D.Y. (1999). Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13, 2983–2995 .10580005
[49] Reiter, J.F., Kikuchi, Y., and Stainier, D.Y. (2001). Multiple roles for Gata5 in zebrafish endoderm formation. Development 128, 125–135 .11092818
[50] Rossi, J.M., Dunn, N.R., Hogan, B.L., and Zaret, K.S. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15, 1998–2009 .11485993
[51] Saito, K., Yoshikawa, M., Ouji, Y., Moriya, K., Nishiofuku, M., Ueda, S., Hayashi, N., Ishizaka, S., and Fukui, H. (2006). Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells. World J Gastroenterol 12, 6818–6827 .17106931
[52] Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E., and Birchmeier, C. (1995). Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 .7854452
[53] Schultheiss, T.M., Burch, J.B., and Lassar, A.B. (1997). A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11, 451–462 .9042859
[54] Shen, M.M. (2007). Nodal signaling: developmental roles and regulation. Development 134, 1023–1034 .17287255
[55] Shiota, G., and Kawasaki, H. (1998). Hepatocyte growth factor in transgenic mice. Int J Exp Pathol 79, 267–277 .10193310
[56] Shiraki, N., Umeda, K., Sakashita, N., Takeya, M., Kume, K., and Kume, S. (2008). Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes Cells 13, 731–746 .18513331
[57] Touboul, T., Hannan, N.R., Corbineau, S., Martinez, A., Martinet, C., Branchereau, S., Mainot, S., Strick-Marchand, H., Pedersen, R., Di Santo, J., (2010). Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51, 1754–1765 .20301097
[58] Tremblay, K.D., and Zaret, K.S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 280, 87–99 .15766750
[59] Tsukada, H., Takada, T., Shiomi, H., Torii, R., and Tani, T. (2006). Acidic fibroblast growth factor promotes hepatic differentiation of monkey embryonic stem cells. In Vitro Cell Dev Biol Anim 42, 83–88 .16759153
[60] Uehara, Y., Minowa, O., Mori, C., Shiota, K., Kuno, J., Noda, T., and Kitamura, N. (1995). Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702–705 .7854453
[61] Vivekanandan, P., and Singh, O.V. (2010). Molecular methods in the diagnosis and management of chronic hepatitis B. Expert Rev Mol Diagn 10, 921–935 .20964611
[62] Wallingford, J.B. (2005). Vertebrate gastrulation: polarity genes control the matrix. Curr Biol 15, R414–R416 .15936260
[63] Watt, A.J., Garrison, W.D., and Duncan, S.A. (2003). HNF4: a central regulator of hepatocyte differentiation and function. Hepatology 37, 1249–1253 .12774000
[64] Zamule, S.M., Coslo, D.M., Chen, F., and Omiecinski, C.J. (2011). Differentiation of human embryonic stem cells along a hepatic lineage. [Epub ahead of print] Chem Biol Interact .21241686
[65] Zaret, K.S. (2000). Liver specification and early morphogenesis. Mech Dev 92, 83–88 .10704889
[66] Zaret, K.S. (2001). Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev 11, 568–574 .11532400
[67] Zhang, W., Yatskievych, T.A., Baker, R.K., and Antin, P.B. (2004). Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling. Dev Biol 268, 312–326 .15063170
[68] Zhao, R., Watt, A.J., Li, J., Luebke-Wheeler, J., Morrisey, E.E., and Duncan, S.A. (2005). GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 25, 2622–2631 .15767668
[69] Zhou, M., Li, P., Tan, L., Qu, S., Ying, Q.L., and Song, H. (2010). Differentiation of mouse embryonic stem cells into hepatocytes induced by a combination of cytokines and sodium butyrate. J Cell Biochem 109, 606–614 .20039312
[70] Zhou, Q.J., Xiang, L.X., Shao, J.Z., Hu, R.Z., Lu, Y.L., Yao, H., and Dai, L.C. (2007). In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate. J Cell Biochem 100, 29–42 .16888815
[71] Zhou, X., Sasaki, H., Lowe, L., Hogan, B.L., and Kuehn, M.R. (1993). Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 .8429908
[72] Zorn, A.M., and Wells, J.M. (2007). Molecular basis of vertebrate endoderm development. Int Rev Cytol 259, 49–111 .17425939
AI Summary AI Mindmap
PDF(334 KB)

Accesses

Citations

Detail

Sections
Recommended

/