[1] Acharya, P., Segall, M.L., Zaiou, M., Morrow, J., Weisgraber, K.H., Phillips, M.C., Lund-Katz, S., and Snow, J. (2002). Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism.
Biochim Biophys Acta 1584, 9–19 .12213488
[2] Alexandrescu, A.T. (2005). Amyloid accomplices and enforcers.
Protein Sci 14, 1–12 .15576561
[3] Anantharamaiah, G.M., Hughes, T.A., Iqbal, M., Gawish, A., Neame, P.J., Medley, M.F., and Segrest, J.P. (1988). Effect of oxidation on the properties of apolipoproteins A-I and A-II.
J Lipid Res 29, 309–318 .3132519
[4] Andersen, C.B., Yagi, H., Manno, M., Martorana, V., Ban, T., Christiansen, G., Otzen, D.E., Goto, Y., and Rischel, C. (2009). Branching in amyloid fibril growth.
Biophys J 96, 1529–1536 .19217869
[5] Andreola, A., Bellotti, V., Giorgetti, S., Mangione, P., Obici, L., Stoppini, M., Torres, J., Monzani, E., Merlini, G., and Sunde, M. (2003). Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein a-I.
J Biol Chem 278, 2444–2451 .12421824
[6] Anfinsen, C.B. (1973). Principles that govern the folding of protein chains.
Science 181, 223–230 .4124164
[7] Ban, T., Hamada, D., Hasegawa, K., Naiki, H., and Goto, Y. (2003). Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence.
J Biol Chem 278, 16462–16465 .12646572
[8] Ban, T., Hoshino, M., Takahashi, S., Hamada, D., Hasegawa, K., Naiki, H., and Goto, Y. (2004). Direct observation of Abeta amyloid fibril growth and inhibition.
J Mol Biol 344, 757–767 .15533443
[9] Ban, T., Morigaki, K., Yagi, H., Kawasaki, T., Kobayashi, A., Yuba, S., Naiki, H., and Goto, Y. (2006a). Real-time and single fibril observation of the formation of amyloid beta spherulitic structures.
J Biol Chem 281, 33677–33683 .16959773
[10] Ban, T., Yamaguchi, K., and Goto, Y. (2006b). Direct observation of amyloid fibril growth, propagation, and adaptation.
Acc Chem Res 39, 663–670 .16981683
[11] Benson, M.D., Liepnieks, J.J., Yazaki, M., Yamashita, T., Hamidi Asl, K., Guenther, B., and Kluve-Beckerman, B. (2001). A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene.
Genomics 72, 272–277 .11401442
[12] Binger, K.J., Griffin, M.D., Heinemann, S.H., and Howlett, G.J. (2010). Methionine-oxidized amyloid fibrils are poor substrates for human methionine sulfoxide reductases A and B2.
Biochemistry 49, 2981–2983 .20218727
[13] Binger, K.J., Griffin, M.D., and Howlett, G.J. (2008a). Methionine oxidation inhibits assembly and promotes disassembly of apolipoprotein C-II amyloid fibrils.
Biochemistry 47, 10208–10217 .18729385
[14] Binger, K.J., Pham, C.L., Wilson, L.M., Bailey, M.F., Lawrence, L.J., Schuck, P., and Howlett, G.J. (2008b). Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining.
J Mol Biol 376, 1116–1129 .18206908
[15] Booth, D.R., Tan, S.Y., Booth, S.E., Hsuan, J.J., Totty, N.F., Nguyen, O., Hutton, T., Vigushin, D.M., Tennent, G.A., Hutchinson, W.L.,
(1995). A new apolipoprotein Al variant, Trp50Arg, causes hereditary amyloidosis.
QJM 88, 695–702 .7493166
[16] Booth, D.R., Tan, S.Y., Booth, S.E., Tennent, G.A., Hutchinson, W.L., Hsuan, J.J., Totty, N.F., Truong, O., Soutar, A.K., Hawkins, P.N.,
(1996). Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene.
J Clin Invest 97, 2714–2721 .8675681
[17] Bosco, D.A., Fowler, D.M., Zhang, Q., Nieva, J., Powers, E.T., Wentworth, P. Jr, Lerner, R.A., and Kelly, J.W. (2006). Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization.
Nat Chem Biol 2, 249–253 .16565714
[18] Calero, M., Rostagno, A., Matsubara, E., Zlokovic, B., Frangione, B., and Ghiso, J. (2000). Apolipoprotein J (clusterin) and Alzheimer’s disease.
Microsc Res Tech 50, 305–315 .10936885
[19] Casta?o, E.M., Prelli, F., Pras, M., and Frangione, B. (1995). Apolipoprotein E carboxyl-terminal fragments are complexed to amyloids A and L. Implications for amyloidogenesis and Alzheimer’s disease.
J Biol Chem 270, 17610–17615 .7615568
[20] Cedazo-Mínguez, A., and Cowburn, R.F. (2001). Apolipoprotein E: a major piece in the Alzheimer’s disease puzzle.
J Cell Mol Med 5, 254–266 .12067484
[21] Chauhan, V., Wang, X., Ramsamy, T., Milne, R.W., and Sparks, D.L. (1998). Evidence for lipid-dependent structural changes in specific domains of apolipoprotein B100.
Biochemistry 37, 3735–3742 .9521692
[22] Chisolm, G.M., and Steinberg, D. (2000). The oxidative modification hypothesis of atherogenesis: an overview.
Free Radic Biol Med 28, 1815–1826 .10946223
[23] Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C.M. (1999). Designing conditions for in vitro formation of amyloid protofilaments and fibrils.
Proc Natl Acad Sci U S A 96, 3590–3594 .10097081
[24] Cho, H.S., Hyman, B.T., Greenberg, S.M., and Rebeck, G.W. (2001). Quantitation of apoE domains in Alzheimer disease brain suggests a role for apoE in Abeta aggregation.
J Neuropathol Exp Neurol 60, 342–349 .11305869
[25] Clark, J.I., and Muchowski, P.J. (2000). Small heat-shock proteins and their potential role in human disease.
Curr Opin Struct Biol 10, 52–59 .10679464
[26] Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families.
Science 261, 921–923 .8346443
[27] Damaschun, G., Damaschun, H., Fabian, H., Gast, K., Kr?ber, R., Wieske, M., and Zirwer, D. (2000). Conversion of yeast phosphoglycerate kinase into amyloid-like structure.
Proteins 39, 204–211 .10737941
[28] de Sousa, M.M., Vital, C., Ostler, D., Fernandes, R., Pouget-Abadie, J., Carles, D., and Saraiva, M.J. (2000). Apolipoprotein AI and transthyretin as components of amyloid fibrils in a kindred with apoAI Leu178His amyloidosis.
Am J Pathol 156, 1911–1917 .10854214
[29] Derham, B.K., and Harding, J.J. (1999). Alpha-crystallin as a molecular chaperone.
Prog Retin Eye Res 18, 463–509 .10217480
[30] Dobson, C.M. (2002). Getting out of shape.
Nature 418, 729–730 .12181546
[31] Dobson, C.M. (2003). Protein folding and misfolding.
Nature 426, 884–890 .14685248
[32] Eriksson, M., Sch?nland, S., Yumlu, S., Hegenbart, U., von Hutten, H., Gioeva, Z., Lohse, P., Büttner, J., Schmidt, H., and R?cken, C. (2009). Hereditary apolipoprotein AI-associated amyloidosis in surgical pathology specimens: identification of three novel mutations in the APOA1 gene.
J Mol Diagn 11, 257–262 .19324996
[33] Evans, K.C., Berger, E.P., Cho, C.G., Weisgraber, K.H., and Lansbury, P.T. Jr. (1995). Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease.
Proc Natl Acad Sci U S A 92, 763–767 .7846048
[34] F?ndrich, M., Fletcher, M.A., and Dobson, C.M. (2001). Amyloid fibrils from muscle myoglobin.
Nature 410, 165–166 .11242064
[35] Frangione, B., Casta?o, E.M., Wisniewski, T., Ghiso, J., Prelli, F., and Vidal, R. (1996). Apolipoprotein E and amyloidogenesis.
Ciba Found Symp 199, 132–141, discussion 141-145 .8915608
[36] Garner, B., Waldeck, A.R., Witting, P.K., Rye, K.A., and Stocker, R. (1998). Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII.
J Biol Chem 273, 6088–6095 .9497326
[37] Genschel, J., Haas, R., Pr?psting, M.J., and Schmidt, H.H. (1998). Apolipoprotein A-I induced amyloidosis.
FEBS Lett 430, 145–149 .9688527
[38] Griffin, M.D., Mok, M.L., Wilson, L.M., Pham, C.L., Waddington, L.J., Perugini, M.A., and Howlett, G.J. (2008). Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
J Mol Biol 375, 240–256 .18005990
[39] Gunzburg, M.J., Perugini, M.A., and Howlett, G.J. (2007). Structural basis for the recognition and cross-linking of amyloid fibrils by human apolipoprotein E.
J Biol Chem 282, 35831–35841 .17916554
[40] H?ggqvist, B., N?slund, J., Sletten, K., Westermark, G.T., Mucchiano, G., Tjernberg, L.O., Nordstedt, C., Engstr?m, U., and Westermark, P. (1999). Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid.
Proc Natl Acad Sci U S A 96, 8669–8674 .10411933
[41] Hatters, D.M., and Howlett, G.J. (2002). The structural basis for amyloid formation by plasma apolipoproteins: a review.
Eur Biophys J 31, 2–8 .12046894
[42] Hatters, D.M., Lawrence, L.J., and Howlett, G.J. (2001a). Sub-micellar phospholipid accelerates amyloid formation by apolipoprotein C-II.
FEBS Lett 494, 220–224 .11311244
[43] Hatters, D.M., Lindner, R.A., Carver, J.A., and Howlett, G.J. (2001b). The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II.
J Biol Chem 276, 33755–33761 .11447233
[44] Hatters, D.M., MacPhee, C.E., Lawrence, L.J., Sawyer, W.H., and Howlett, G.J. (2000). Human apolipoprotein C-II forms twisted amyloid ribbons and closed loops.
Biochemistry 39, 8276–8283 .10889036
[45] Hatters, D.M., MacRaild, C.A., Daniels, R., Gosal, W.S., Thomson, N.H., Jones, J.A., Davis, J.J., MacPhee, C.E., Dobson, C.M., and Howlett, G.J. (2003). The circularization of amyloid fibrils formed by apolipoprotein C-II.
Biophys J 85, 3979–3990 .14645087
[46] Hatters, D.M., Wilson, M.R., Easterbrook-Smith, S.B., and Howlett, G.J. (2002). Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin.
Eur J Biochem 269, 2789–2794 .12047389
[47] Hatters, D.M., Zhong, N., Rutenber, E., and Weisgraber, K.H. (2006). Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils.
J Mol Biol 361, 932–944 .16890957
[48] Havel, R.J., Fielding, C.J., Olivecrona, T., Shore, V.G., Fielding, P.E., and Egelrud, T. (1973). Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoproteins lipase from different sources.
Biochemistry 12, 1828–1833 .4349259
[49] Higgins, G.A., Large, C.H., Rupniak, H.T., and Barnes, J.C. (1997). Apolipoprotein E and Alzheimer’s disease: a review of recent studies.
Pharmacol Biochem Behav 56, 675–685 .9130294
[50] Higuchi, K., Kitagawa, K., Naiki, H., Hanada, K., Hosokawa, M., and Takeda, T. (1991a). Polymorphism of apolipoprotein A-II (apoA-II) among inbred strains of mice. Relationship between the molecular type of apoA-II and mouse senile amyloidosis.
Biochem J 279, 427–433 .1683229
[51] Higuchi, K., Naiki, H., Kitagawa, K., Hosokawa, M., and Takeda, T. (1991b). Mouse senile amyloidosis. ASSAM amyloidosis in mice presents universally as a systemic age-associated amyloidosis.
Virchows Arch B Cell Pathol Incl Mol Pathol 60, 231–238 .1681611
[52] Howlett, G.J., and Moore, K.J. (2006). Untangling the role of amyloid in atherosclerosis.
Curr Opin Lipidol 17, 541–547 .16960503
[53] Humphreys, D.T., Carver, J.A., Easterbrook-Smith, S.B., and Wilson, M.R. (1999). Clusterin has chaperone-like activity similar to that of small heat shock proteins.
J Biol Chem 274, 6875–6881 .10066740
[54] Hung, A., Griffin, M.D., Howlett, G.J., and Yarovsky, I. (2008). Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation?
Eur Biophys J 38, 99–110 .18769912
[55] Hung, A., Griffin, M.D., Howlett, G.J., and Yarovsky, I. (2009). Lipids enhance apolipoprotein C-II-derived amyloidogenic peptide oligomerization but inhibit fibril formation.
J Phys Chem B 113, 9447–9453 .19537801
[56] Kawano, M., Kawakami, M., Otsuka, M., Yashima, H., Yaginuma, T., and Ueki, A. (1995). Marked decrease of plasma apolipoprotein AI and AII in Japanese patients with late-onset non-familial Alzheimer’s disease.
Clin Chim Acta 239, 209–211 .8542660
[57] Kinnunen, P.K., Jackson, R.L., Smith, L.C., Gotto, A.M. Jr, and Sparrow, J.T. (1977). Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II.
Proc Natl Acad Sci U S A 74, 4848–4851 .270715
[58] Kisilevsky, R. (2000). The relation of proteoglycans, serum amyloid P and apo E to amyloidosis current status, 2000.
Amyloid 7, 23–25 .10842701
[59] Knight, J.D., and Miranker, A.D. (2004). Phospholipid catalysis of diabetic amyloid assembly.
J Mol Biol 341, 1175–1187 .15321714
[60] Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R.,
(2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides.
Nat Med 10, 719–726 .15195085
[61] Kuriyama, M., Takahashi, K., Yamano, T., Hokezu, Y., Togo, S., Osame, M., and Igakura, T. (1994). Low levels of serum apolipoprotein A I and A II in senile dementia.
Jpn J Psychiatry Neurol 48, 589–593 .7891423
[62] Lange, U., Boss, B., Teichmann, J., Kl?r, H.U., and Neeck, G. (2000). Serum amyloid A—an indicator of inflammation in ankylosing spondylitis.
Rheumatol Int 19, 119–122 .10836520
[63] LaRosa, J.C., Levy, R.I., Herbert, P., Lux, S.E., and Fredrickson, D.S. (1970). A specific apoprotein activator for lipoprotein lipase.
Biochem Biophys Res Commun 41, 57–62 .5459123
[64] Legge, F.S., Binger, K.J., Griffin, M.D., Howlett, G.J., Scanlon, D., Treutlein, H., and Yarovsky, I. (2009). Effect of oxidation and mutation on the conformational dynamics and fibril assembly of amyloidogenic peptides derived from apolipoprotein C-II.
J Phys Chem B 113, 14006–14014 .19780547
[65] Legge, F.S., Treutlein, H., Howlett, G.J., and Yarovsky, I. (2007). Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II.
Biophys Chem 130, 102–113 .17825978
[66] Li, Q., Min, J., Ahn, Y.H., Namm, J., Kim, E.M., Lui, R., Kim, H.Y., Ji, Y., Wu, H., Wisniewski, T.,
(2007). Styryl-based compounds as potential in vivo imaging agents for beta-amyloid plaques.
Chembiochem 8, 1679–1687 .17705341
[67] MacRaild, C.A., Hatters, D.M., Howlett, G.J., and Gooley, P.R. (2001). NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate.
Biochemistry 40, 5414–5421 .11331005
[68] MacRaild, C.A., Hatters, D.M., Lawrence, L.J., and Howlett, G.J. (2003). Sedimentation velocity analysis of flexible macromolecules: self-association and tangling of amyloid fibrils.
Biophys J 84, 2562–2569 .12668464
[69] MacRaild, C.A., Howlett, G.J., and Gooley, P.R. (2004a). The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine.
Biochemistry 43, 8084–8093 .15209504
[70] MacRaild, C.A., Stewart, C.R., Mok, Y.F., Gunzburg, M.J., Perugini, M.A., Lawrence, L.J., Tirtaatmadja, V., Cooper-White, J.J., and Howlett, G.J. (2004b). Non-fibrillar components of amyloid deposits mediate the self-association and tangling of amyloid fibrils.
J Biol Chem 279, 21038–21045 .15031287
[71] Mak, P.A., Laffitte, B.A., Desrumaux, C., Joseph, S.B., Curtiss, L.K., Mangelsdorf, D.J., Tontonoz, P., and Edwards, P.A. (2002). Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta.
J Biol Chem 277, 31900–31908 .12032151
[72] May, P.C., and Finch, C.E. (1992). Sulfated glycoprotein 2: new relationships of this multifunctional protein to neurodegeneration.
Trends Neurosci 15, 391–396 .1279864
[73] Medeiros, L.A., Khan, T., El Khoury, J.B., Pham, C.L., Hatters, D.M., Howlett, G.J., Lopez, R., O’Brien, K.D., and Moore, K.J. (2004). Fibrillar amyloid protein present in atheroma activates CD36 signal transduction.
J Biol Chem 279, 10643–10648 .14699114
[74] Merched, A., Xia, Y., Visvikis, S., Serot, J.M., and Siest, G. (2000). Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer’s disease.
Neurobiol Aging 21, 27–30 .10794845
[75] Mok, Y.F., Ryan, T.M., Yang, S., Hatters, D.M., Howlett, G.J., and Griffin, M.D. (2010). Sedimentation velocity analysis of amyloid oligomers and fibrils using fluorescence detection.
Methods. doi: 10.1016/j.ymeth.2010.10.004. 21055469
[76] Moore, K.J., El Khoury, J., Medeiros, L.A., Terada, K., Geula, C., Luster, A.D., and Freeman, M.W. (2002). A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid.
J Biol Chem 277, 47373–47379 .12239221
[77] Mucchiano, G., Cornwell, G.G. 3rd, and Westermark, P. (1992). Senile aortic amyloid. Evidence for two distinct forms of localized deposits.
Am J Pathol 140, 871–877 .1562050
[78] Mucchiano, G.I., H?ggqvist, B., Sletten, K., and Westermark, P. (2001a). Apolipoprotein A-1-derived amyloid in atherosclerotic plaques of the human aorta.
J Pathol 193, 270–275 .11180176
[79] Mucchiano, G.I., Jonasson, L., H?ggqvist, B., Einarsson, E., and Westermark, P. (2001b). Apolipoprotein A-I-derived amyloid in atherosclerosis. Its association with plasma levels of apolipoprotein A-I and cholesterol.
Am J Clin Pathol 115, 298–303 .11211620
[80] Myers, S.L., Jones, S., Jahn, T.R., Morten, I.J., Tennent, G.A., Hewitt, E.W., and Radford, S.E. (2006). A systematic study of the effect of physiological factors on beta2-microglobulin amyloid formation at neutral pH.
Biochemistry 45, 2311–2321 .16475820
[81] Naiki, H., Gejyo, F., and Nakakuki, K. (1997). Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s beta-amyloid fibril formation in vitro.
Biochemistry 36, 6243–6250 .9166797
[82] Naiki, H., Hasegawa, K., Yamaguchi, I., Nakamura, H., Gejyo, F., and Nakakuki, K. (1998). Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer’s beta-amyloid fibril formation in vitro.
Biochemistry 37, 17882–17889 .9922155
[83] N?slund, J., Thyberg, J., Tjernberg, L.O., Wernstedt, C., Karlstr?m, A.R., Bogdanovic, N., Gandy, S.E., Lannfelt, L., Terenius, L., and Nordstedt, C. (1995). Characterization of stable complexes involving apolipoprotein E and the amyloid beta peptide in Alzheimer’s disease brain.
Neuron 15, 219–228 .7619525
[84] O’Brien, K.D., Olin, K.L., Alpers, C.E., Chiu, W., Ferguson, M., Hudkins, K., Wight, T.N., and Chait, A. (1998). Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins.
Circulation 98, 519–527 .9714108
[85] Obici, L., Franceschini, G., Calabresi, L., Giorgetti, S., Stoppini, M., Merlini, G., and Bellotti, V. (2006). Structure, function and amyloidogenic propensity of apolipoprotein A-I.
Amyloid 13, 191–205 .17107880
[86] Ozawa, D., Yagi, H., Ban, T., Kameda, A., Kawakami, T., Naiki, H., and Goto, Y. (2009). Destruction of amyloid fibrils of a beta2-microglobulin fragment by laser beam irradiation.
J Biol Chem 284, 1009–1017 .19010783
[87] Pepys, M.B. (2006). Amyloidosis.
Annu Rev Med 57, 223–241 .16409147
[88] Pepys, M.B., Booth, D.R., Huchinson, W.L., Gallimore, J.R., Collins, P.M., and Hohenester, E. (1997). Amyloid P component. A critical review.
AMYLOID 4, 274–295 .
[89] Pepys, M.B., Herbert, J., Hutchinson, W.L., Tennent, G.A., Lachmann, H.J., Gallimore, J.R., Lovat, L.B., Bartfai, T., Alanine, A., Hertel, C.,
(2002). Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis.
Nature 417, 254–259 .12015594
[90] Permanne, B., Perez, C., Soto, C., Frangione, B., and Wisniewski, T. (1997). Detection of apolipoprotein E/dimeric soluble amyloid beta complexes in Alzheimer’s disease brain supernatants.
Biochem Biophys Res Commun 240, 715–720 .9398632
[91] Pham, C.L., Hatters, D.M., Lawrence, L.J., and Howlett, G.J. (2002). Cross-linking and amyloid formation by N- and C-terminal cysteine derivatives of human apolipoprotein C-II.
Biochemistry 41, 14313–14322 .12450397
[92] Puchtler, H., and Sweat, F. (1962). Amidoblack as a stain for hemoglobin.
Arch Pathol 73, 245–249 .14489118
[93] R?cken, C., Tautenhahn, J., Bühling, F., Sachwitz, D., V?ckler, S., Goette, A., and Bürger, T. (2006). Prevalence and pathology of amyloid in atherosclerotic arteries.
Arterioscler Thromb Vasc Biol 26, 676–677 .16484604
[94] Ross, R. (1999). Atherosclerosis—an inflammatory disease.
N Engl J Med 340, 115–126 .9887164
[95] Ryan, T.M., Griffin, M.D., Teoh, C.L., Ooi, J., and Howlett, G.J. (2011). High-Affinity Amphipathic Modulators of Amyloid Fibril Nucleation and Elongation.
J Mol Biol 406, 416–429 .
10.1016/j.jmb.2010.12.02321185302
[96] Ryan, T.M., Howlett, G.J., and Bailey, M.F. (2008). Fluorescence detection of a lipid-induced tetrameric intermediate in amyloid fibril formation by apolipoprotein C-II.
J Biol Chem 283, 35118–35128 .18852267
[97] Ryan, T.M., Teoh, C.L., Griffin, M.D., Bailey, M.F., Schuck, P., and Howlett, G.J. (2010). Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils.
J Mol Biol 399, 731–740 .20433849
[98] Saczynski, J.S., White, L., Peila, R.L., Rodriguez, B.L., and Launer, L.J. (2007). The relation between apolipoprotein A-I and dementia: the Honolulu-Asia aging study.
Am J Epidemiol 165, 985–992 .17298957
[99] Saunders, A.M., Strittmatter, W.J., Schmechel, D., George-Hyslop, P.H., Pericak-Vance, M.A., Joo, S.H., Rosi, B.L., Gusella, J.F., Crapper-MacLachlan, D.R., Alberts, M.J.,
(1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease.
Neurology 43, 1467–1472 .8350998
[100] Segrest, J.P., Garber, D.W., Brouillette, C.G., Harvey, S.C., and Anantharamaiah, G.M. (1994). The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins.
Adv Protein Chem 45, 303–369 .8154372
[101] Sipe, J.D., and Cohen, A.S. (2000). Review: history of the amyloid fibril.
J Struct Biol 130, 88–98 .10940217
[102] Soto, C., Casta?o, E.M., Prelli, F., Kumar, R.A., and Baumann, M. (1995). Apolipoprotein E increases the fibrillogenic potential of synthetic peptides derived from Alzheimer’s, gelsolin and AA amyloids.
FEBS Lett 371, 110–114 .7672107
[103] Stadtman, E.R., and Levine, R.L. (2000). Protein oxidation.
Ann N Y Acad Sci 899, 191–208 .10863540
[104] Stewart, C.R., Wilson, L.M., Zhang, Q., Pham, C.L., Waddington, L.J., Staples, M.K., Stapleton, D., Kelly, J.W., and Howlett, G.J. (2007). Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation.
Biochemistry 46, 5552–5561 .17429947
[105] Strittmatter, W.J., Weisgraber, K.H., Huang, D.Y., Dong, L.M., Salvesen, G.S., Pericak-Vance, M., Schmechel, D., Saunders, A.M., Goldgaber, D., and Roses, A.D. (1993). Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease.
Proc Natl Acad Sci U S A 90, 8098–8102 .8367470
[106] Tennent, G.A., Lovat, L.B., and Pepys, M.B. (1995). Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis.
Proc Natl Acad Sci U S A 92, 4299–4303 .7753801
[107] Teoh, C.L., Pham, C.L., Todorova, N., Hung, A., Lincoln, C.N., Lees, E., Lam, Y.H., Binger, K.J., Thomson, N.H., Radford, S.E.,
(2011a). A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations.
J Mol Biol 405, 1246–1266 .21146539
[108] Teoh, C.L., Yagi, H., Griffin, M.D., Goto, Y., and Howlett, G.J. (2011b). Visualization of polymorphism in apolipoprotein C-II amyloid fibrils.
J Biochem 149, 67–74 .20889492
[109] Todorova, N., Hung, A., Maaser, S.M., Griffin, M.D., Karas, J., Howlett, G.J., and Yarovsky, I. (2010). Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II(60-70) peptide.
Phys Chem Chem Phys 12, 14762–14774 .20938536
[110] Westermark, G.T., Johnson, K.H., and Westermark, P. (1999). Staining methods for identification of amyloid in tissue.
Methods Enzymol 309, 3–25 .10507013
[111] Westermark, P., Mucchiano, G., Marthin, T., Johnson, K.H., and Sletten, K. (1995). Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques.
Am J Pathol 147, 1186–1192 .7485381
[112] Wilson, L.M., Mok, Y.F., Binger, K.J., Griffin, M.D., Mertens, H.D., Lin, F., Wade, J.D., Gooley, P.R., and Howlett, G.J. (2007). A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis.
J Mol Biol 366, 1639–1651 .17217959
[113] Wisniewski, T., Lalowski, M., Golabek, A., Vogel, T., and Frangione, B. (1995). Is Alzheimer’s disease an apolipoprotein E amyloidosis?
Lancet 345, 956–958 .7715296
[114] Wong, Y.Q., Binger, K.J., Howlett, G.J., and Griffin, M.D. (2010). Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I.
Proc Natl Acad Sci U S A 107, 1977–1982 .20133843
[115] Yagi, H., Ban, T., Morigaki, K., Naiki, H., and Goto, Y. (2007). Visualization and classification of amyloid beta supramolecular assemblies.
Biochemistry 46, 15009–15017 .18044976
[116] Yagi, H., Ozawa, D., Sakurai, K., Kawakami, T., Kuyama, H., Nishimura, O., Shimanouchi, T., Kuboi, R., Naiki, H., and Goto, Y. (2010). Laser-induced propagation and destruction of amyloid beta fibrils.
J Biol Chem 285, 19660–19667 .20406822
[117] Zhang, Q., Powers, E.T., Nieva, J., Huff, M.E., Dendle, M.A., Bieschke, J., Glabe, C.G., Eschenmoser, A., Wentworth, P. Jr, Lerner, R.A.,
(2004). Metabolite-initiated protein misfolding may trigger Alzheimer’s disease.
Proc Natl Acad Sci U S A 101, 4752–4757 .15034169
[118] Zhao, H., Tuominen, E.K., and Kinnunen, P.K. (2004). Formation of amyloid fibers triggered by phosphatidylserine-containing membranes.
Biochemistry 43, 10302–10307 .15301528
[119] Zheng, L., Nukuna, B., Brennan, M.L., Sun, M., Goormastic, M., Settle, M., Schmitt, D., Fu, X., Thomson, L., Fox, P.L.,
(2004). Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease.
J Clin Invest 114, 529–541 .15314690