Apolipoproteins and amyloid fibril formation in atherosclerosis

Chai Lean Teoh, Michael D. W. Griffin, Geoffrey J. Howlett()

PDF(356 KB)
PDF(356 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (2) : 116-127. DOI: 10.1007/s13238-011-1013-6
REVIEW
REVIEW

Apolipoproteins and amyloid fibril formation in atherosclerosis

  • Chai Lean Teoh, Michael D. W. Griffin, Geoffrey J. Howlett()
Author information +
History +

Abstract

Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-II, apoC-II and apoE are implicated in amyloid formation or influence amyloid formation by other proteins. We review present knowledge of amyloid formation by apolipoproteins in disease, with particular focus on atherosclerosis. Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions. Additionally, we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis, and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease.

Keywords

misfolding / apolipoproteins / amyloid fibril / atherosclerosis

Cite this article

Download citation ▾
Chai Lean Teoh, Michael D. W. Griffin, Geoffrey J. Howlett. Apolipoproteins and amyloid fibril formation in atherosclerosis. Prot Cell, 2011, 2(2): 116‒127 https://doi.org/10.1007/s13238-011-1013-6

References

[1] Acharya, P., Segall, M.L., Zaiou, M., Morrow, J., Weisgraber, K.H., Phillips, M.C., Lund-Katz, S., and Snow, J. (2002). Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochim Biophys Acta 1584, 9–19 .12213488
[2] Alexandrescu, A.T. (2005). Amyloid accomplices and enforcers. Protein Sci 14, 1–12 .15576561
[3] Anantharamaiah, G.M., Hughes, T.A., Iqbal, M., Gawish, A., Neame, P.J., Medley, M.F., and Segrest, J.P. (1988). Effect of oxidation on the properties of apolipoproteins A-I and A-II. J Lipid Res 29, 309–318 .3132519
[4] Andersen, C.B., Yagi, H., Manno, M., Martorana, V., Ban, T., Christiansen, G., Otzen, D.E., Goto, Y., and Rischel, C. (2009). Branching in amyloid fibril growth. Biophys J 96, 1529–1536 .19217869
[5] Andreola, A., Bellotti, V., Giorgetti, S., Mangione, P., Obici, L., Stoppini, M., Torres, J., Monzani, E., Merlini, G., and Sunde, M. (2003). Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein a-I. J Biol Chem 278, 2444–2451 .12421824
[6] Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science 181, 223–230 .4124164
[7] Ban, T., Hamada, D., Hasegawa, K., Naiki, H., and Goto, Y. (2003). Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J Biol Chem 278, 16462–16465 .12646572
[8] Ban, T., Hoshino, M., Takahashi, S., Hamada, D., Hasegawa, K., Naiki, H., and Goto, Y. (2004). Direct observation of Abeta amyloid fibril growth and inhibition. J Mol Biol 344, 757–767 .15533443
[9] Ban, T., Morigaki, K., Yagi, H., Kawasaki, T., Kobayashi, A., Yuba, S., Naiki, H., and Goto, Y. (2006a). Real-time and single fibril observation of the formation of amyloid beta spherulitic structures. J Biol Chem 281, 33677–33683 .16959773
[10] Ban, T., Yamaguchi, K., and Goto, Y. (2006b). Direct observation of amyloid fibril growth, propagation, and adaptation. Acc Chem Res 39, 663–670 .16981683
[11] Benson, M.D., Liepnieks, J.J., Yazaki, M., Yamashita, T., Hamidi Asl, K., Guenther, B., and Kluve-Beckerman, B. (2001). A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene. Genomics 72, 272–277 .11401442
[12] Binger, K.J., Griffin, M.D., Heinemann, S.H., and Howlett, G.J. (2010). Methionine-oxidized amyloid fibrils are poor substrates for human methionine sulfoxide reductases A and B2. Biochemistry 49, 2981–2983 .20218727
[13] Binger, K.J., Griffin, M.D., and Howlett, G.J. (2008a). Methionine oxidation inhibits assembly and promotes disassembly of apolipoprotein C-II amyloid fibrils. Biochemistry 47, 10208–10217 .18729385
[14] Binger, K.J., Pham, C.L., Wilson, L.M., Bailey, M.F., Lawrence, L.J., Schuck, P., and Howlett, G.J. (2008b). Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining. J Mol Biol 376, 1116–1129 .18206908
[15] Booth, D.R., Tan, S.Y., Booth, S.E., Hsuan, J.J., Totty, N.F., Nguyen, O., Hutton, T., Vigushin, D.M., Tennent, G.A., Hutchinson, W.L., (1995). A new apolipoprotein Al variant, Trp50Arg, causes hereditary amyloidosis. QJM 88, 695–702 .7493166
[16] Booth, D.R., Tan, S.Y., Booth, S.E., Tennent, G.A., Hutchinson, W.L., Hsuan, J.J., Totty, N.F., Truong, O., Soutar, A.K., Hawkins, P.N., (1996). Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene. J Clin Invest 97, 2714–2721 .8675681
[17] Bosco, D.A., Fowler, D.M., Zhang, Q., Nieva, J., Powers, E.T., Wentworth, P. Jr, Lerner, R.A., and Kelly, J.W. (2006). Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol 2, 249–253 .16565714
[18] Calero, M., Rostagno, A., Matsubara, E., Zlokovic, B., Frangione, B., and Ghiso, J. (2000). Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50, 305–315 .10936885
[19] Casta?o, E.M., Prelli, F., Pras, M., and Frangione, B. (1995). Apolipoprotein E carboxyl-terminal fragments are complexed to amyloids A and L. Implications for amyloidogenesis and Alzheimer’s disease. J Biol Chem 270, 17610–17615 .7615568
[20] Cedazo-Mínguez, A., and Cowburn, R.F. (2001). Apolipoprotein E: a major piece in the Alzheimer’s disease puzzle. J Cell Mol Med 5, 254–266 .12067484
[21] Chauhan, V., Wang, X., Ramsamy, T., Milne, R.W., and Sparks, D.L. (1998). Evidence for lipid-dependent structural changes in specific domains of apolipoprotein B100. Biochemistry 37, 3735–3742 .9521692
[22] Chisolm, G.M., and Steinberg, D. (2000). The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 28, 1815–1826 .10946223
[23] Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C.M. (1999). Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96, 3590–3594 .10097081
[24] Cho, H.S., Hyman, B.T., Greenberg, S.M., and Rebeck, G.W. (2001). Quantitation of apoE domains in Alzheimer disease brain suggests a role for apoE in Abeta aggregation. J Neuropathol Exp Neurol 60, 342–349 .11305869
[25] Clark, J.I., and Muchowski, P.J. (2000). Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol 10, 52–59 .10679464
[26] Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 .8346443
[27] Damaschun, G., Damaschun, H., Fabian, H., Gast, K., Kr?ber, R., Wieske, M., and Zirwer, D. (2000). Conversion of yeast phosphoglycerate kinase into amyloid-like structure. Proteins 39, 204–211 .10737941
[28] de Sousa, M.M., Vital, C., Ostler, D., Fernandes, R., Pouget-Abadie, J., Carles, D., and Saraiva, M.J. (2000). Apolipoprotein AI and transthyretin as components of amyloid fibrils in a kindred with apoAI Leu178His amyloidosis. Am J Pathol 156, 1911–1917 .10854214
[29] Derham, B.K., and Harding, J.J. (1999). Alpha-crystallin as a molecular chaperone. Prog Retin Eye Res 18, 463–509 .10217480
[30] Dobson, C.M. (2002). Getting out of shape. Nature 418, 729–730 .12181546
[31] Dobson, C.M. (2003). Protein folding and misfolding. Nature 426, 884–890 .14685248
[32] Eriksson, M., Sch?nland, S., Yumlu, S., Hegenbart, U., von Hutten, H., Gioeva, Z., Lohse, P., Büttner, J., Schmidt, H., and R?cken, C. (2009). Hereditary apolipoprotein AI-associated amyloidosis in surgical pathology specimens: identification of three novel mutations in the APOA1 gene. J Mol Diagn 11, 257–262 .19324996
[33] Evans, K.C., Berger, E.P., Cho, C.G., Weisgraber, K.H., and Lansbury, P.T. Jr. (1995). Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci U S A 92, 763–767 .7846048
[34] F?ndrich, M., Fletcher, M.A., and Dobson, C.M. (2001). Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 .11242064
[35] Frangione, B., Casta?o, E.M., Wisniewski, T., Ghiso, J., Prelli, F., and Vidal, R. (1996). Apolipoprotein E and amyloidogenesis. Ciba Found Symp 199, 132–141, discussion 141-145 .8915608
[36] Garner, B., Waldeck, A.R., Witting, P.K., Rye, K.A., and Stocker, R. (1998). Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem 273, 6088–6095 .9497326
[37] Genschel, J., Haas, R., Pr?psting, M.J., and Schmidt, H.H. (1998). Apolipoprotein A-I induced amyloidosis. FEBS Lett 430, 145–149 .9688527
[38] Griffin, M.D., Mok, M.L., Wilson, L.M., Pham, C.L., Waddington, L.J., Perugini, M.A., and Howlett, G.J. (2008). Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways. J Mol Biol 375, 240–256 .18005990
[39] Gunzburg, M.J., Perugini, M.A., and Howlett, G.J. (2007). Structural basis for the recognition and cross-linking of amyloid fibrils by human apolipoprotein E. J Biol Chem 282, 35831–35841 .17916554
[40] H?ggqvist, B., N?slund, J., Sletten, K., Westermark, G.T., Mucchiano, G., Tjernberg, L.O., Nordstedt, C., Engstr?m, U., and Westermark, P. (1999). Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci U S A 96, 8669–8674 .10411933
[41] Hatters, D.M., and Howlett, G.J. (2002). The structural basis for amyloid formation by plasma apolipoproteins: a review. Eur Biophys J 31, 2–8 .12046894
[42] Hatters, D.M., Lawrence, L.J., and Howlett, G.J. (2001a). Sub-micellar phospholipid accelerates amyloid formation by apolipoprotein C-II. FEBS Lett 494, 220–224 .11311244
[43] Hatters, D.M., Lindner, R.A., Carver, J.A., and Howlett, G.J. (2001b). The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II. J Biol Chem 276, 33755–33761 .11447233
[44] Hatters, D.M., MacPhee, C.E., Lawrence, L.J., Sawyer, W.H., and Howlett, G.J. (2000). Human apolipoprotein C-II forms twisted amyloid ribbons and closed loops. Biochemistry 39, 8276–8283 .10889036
[45] Hatters, D.M., MacRaild, C.A., Daniels, R., Gosal, W.S., Thomson, N.H., Jones, J.A., Davis, J.J., MacPhee, C.E., Dobson, C.M., and Howlett, G.J. (2003). The circularization of amyloid fibrils formed by apolipoprotein C-II. Biophys J 85, 3979–3990 .14645087
[46] Hatters, D.M., Wilson, M.R., Easterbrook-Smith, S.B., and Howlett, G.J. (2002). Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin. Eur J Biochem 269, 2789–2794 .12047389
[47] Hatters, D.M., Zhong, N., Rutenber, E., and Weisgraber, K.H. (2006). Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J Mol Biol 361, 932–944 .16890957
[48] Havel, R.J., Fielding, C.J., Olivecrona, T., Shore, V.G., Fielding, P.E., and Egelrud, T. (1973). Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoproteins lipase from different sources. Biochemistry 12, 1828–1833 .4349259
[49] Higgins, G.A., Large, C.H., Rupniak, H.T., and Barnes, J.C. (1997). Apolipoprotein E and Alzheimer’s disease: a review of recent studies. Pharmacol Biochem Behav 56, 675–685 .9130294
[50] Higuchi, K., Kitagawa, K., Naiki, H., Hanada, K., Hosokawa, M., and Takeda, T. (1991a). Polymorphism of apolipoprotein A-II (apoA-II) among inbred strains of mice. Relationship between the molecular type of apoA-II and mouse senile amyloidosis. Biochem J 279, 427–433 .1683229
[51] Higuchi, K., Naiki, H., Kitagawa, K., Hosokawa, M., and Takeda, T. (1991b). Mouse senile amyloidosis. ASSAM amyloidosis in mice presents universally as a systemic age-associated amyloidosis. Virchows Arch B Cell Pathol Incl Mol Pathol 60, 231–238 .1681611
[52] Howlett, G.J., and Moore, K.J. (2006). Untangling the role of amyloid in atherosclerosis. Curr Opin Lipidol 17, 541–547 .16960503
[53] Humphreys, D.T., Carver, J.A., Easterbrook-Smith, S.B., and Wilson, M.R. (1999). Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274, 6875–6881 .10066740
[54] Hung, A., Griffin, M.D., Howlett, G.J., and Yarovsky, I. (2008). Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation? Eur Biophys J 38, 99–110 .18769912
[55] Hung, A., Griffin, M.D., Howlett, G.J., and Yarovsky, I. (2009). Lipids enhance apolipoprotein C-II-derived amyloidogenic peptide oligomerization but inhibit fibril formation. J Phys Chem B 113, 9447–9453 .19537801
[56] Kawano, M., Kawakami, M., Otsuka, M., Yashima, H., Yaginuma, T., and Ueki, A. (1995). Marked decrease of plasma apolipoprotein AI and AII in Japanese patients with late-onset non-familial Alzheimer’s disease. Clin Chim Acta 239, 209–211 .8542660
[57] Kinnunen, P.K., Jackson, R.L., Smith, L.C., Gotto, A.M. Jr, and Sparrow, J.T. (1977). Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc Natl Acad Sci U S A 74, 4848–4851 .270715
[58] Kisilevsky, R. (2000). The relation of proteoglycans, serum amyloid P and apo E to amyloidosis current status, 2000. Amyloid 7, 23–25 .10842701
[59] Knight, J.D., and Miranker, A.D. (2004). Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341, 1175–1187 .15321714
[60] Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R., (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10, 719–726 .15195085
[61] Kuriyama, M., Takahashi, K., Yamano, T., Hokezu, Y., Togo, S., Osame, M., and Igakura, T. (1994). Low levels of serum apolipoprotein A I and A II in senile dementia. Jpn J Psychiatry Neurol 48, 589–593 .7891423
[62] Lange, U., Boss, B., Teichmann, J., Kl?r, H.U., and Neeck, G. (2000). Serum amyloid A—an indicator of inflammation in ankylosing spondylitis. Rheumatol Int 19, 119–122 .10836520
[63] LaRosa, J.C., Levy, R.I., Herbert, P., Lux, S.E., and Fredrickson, D.S. (1970). A specific apoprotein activator for lipoprotein lipase. Biochem Biophys Res Commun 41, 57–62 .5459123
[64] Legge, F.S., Binger, K.J., Griffin, M.D., Howlett, G.J., Scanlon, D., Treutlein, H., and Yarovsky, I. (2009). Effect of oxidation and mutation on the conformational dynamics and fibril assembly of amyloidogenic peptides derived from apolipoprotein C-II. J Phys Chem B 113, 14006–14014 .19780547
[65] Legge, F.S., Treutlein, H., Howlett, G.J., and Yarovsky, I. (2007). Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Biophys Chem 130, 102–113 .17825978
[66] Li, Q., Min, J., Ahn, Y.H., Namm, J., Kim, E.M., Lui, R., Kim, H.Y., Ji, Y., Wu, H., Wisniewski, T., (2007). Styryl-based compounds as potential in vivo imaging agents for beta-amyloid plaques. Chembiochem 8, 1679–1687 .17705341
[67] MacRaild, C.A., Hatters, D.M., Howlett, G.J., and Gooley, P.R. (2001). NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate. Biochemistry 40, 5414–5421 .11331005
[68] MacRaild, C.A., Hatters, D.M., Lawrence, L.J., and Howlett, G.J. (2003). Sedimentation velocity analysis of flexible macromolecules: self-association and tangling of amyloid fibrils. Biophys J 84, 2562–2569 .12668464
[69] MacRaild, C.A., Howlett, G.J., and Gooley, P.R. (2004a). The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine. Biochemistry 43, 8084–8093 .15209504
[70] MacRaild, C.A., Stewart, C.R., Mok, Y.F., Gunzburg, M.J., Perugini, M.A., Lawrence, L.J., Tirtaatmadja, V., Cooper-White, J.J., and Howlett, G.J. (2004b). Non-fibrillar components of amyloid deposits mediate the self-association and tangling of amyloid fibrils. J Biol Chem 279, 21038–21045 .15031287
[71] Mak, P.A., Laffitte, B.A., Desrumaux, C., Joseph, S.B., Curtiss, L.K., Mangelsdorf, D.J., Tontonoz, P., and Edwards, P.A. (2002). Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta. J Biol Chem 277, 31900–31908 .12032151
[72] May, P.C., and Finch, C.E. (1992). Sulfated glycoprotein 2: new relationships of this multifunctional protein to neurodegeneration. Trends Neurosci 15, 391–396 .1279864
[73] Medeiros, L.A., Khan, T., El Khoury, J.B., Pham, C.L., Hatters, D.M., Howlett, G.J., Lopez, R., O’Brien, K.D., and Moore, K.J. (2004). Fibrillar amyloid protein present in atheroma activates CD36 signal transduction. J Biol Chem 279, 10643–10648 .14699114
[74] Merched, A., Xia, Y., Visvikis, S., Serot, J.M., and Siest, G. (2000). Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer’s disease. Neurobiol Aging 21, 27–30 .10794845
[75] Mok, Y.F., Ryan, T.M., Yang, S., Hatters, D.M., Howlett, G.J., and Griffin, M.D. (2010). Sedimentation velocity analysis of amyloid oligomers and fibrils using fluorescence detection. Methods. doi: 10.1016/j.ymeth.2010.10.004. 21055469
[76] Moore, K.J., El Khoury, J., Medeiros, L.A., Terada, K., Geula, C., Luster, A.D., and Freeman, M.W. (2002). A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. J Biol Chem 277, 47373–47379 .12239221
[77] Mucchiano, G., Cornwell, G.G. 3rd, and Westermark, P. (1992). Senile aortic amyloid. Evidence for two distinct forms of localized deposits. Am J Pathol 140, 871–877 .1562050
[78] Mucchiano, G.I., H?ggqvist, B., Sletten, K., and Westermark, P. (2001a). Apolipoprotein A-1-derived amyloid in atherosclerotic plaques of the human aorta. J Pathol 193, 270–275 .11180176
[79] Mucchiano, G.I., Jonasson, L., H?ggqvist, B., Einarsson, E., and Westermark, P. (2001b). Apolipoprotein A-I-derived amyloid in atherosclerosis. Its association with plasma levels of apolipoprotein A-I and cholesterol. Am J Clin Pathol 115, 298–303 .11211620
[80] Myers, S.L., Jones, S., Jahn, T.R., Morten, I.J., Tennent, G.A., Hewitt, E.W., and Radford, S.E. (2006). A systematic study of the effect of physiological factors on beta2-microglobulin amyloid formation at neutral pH. Biochemistry 45, 2311–2321 .16475820
[81] Naiki, H., Gejyo, F., and Nakakuki, K. (1997). Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry 36, 6243–6250 .9166797
[82] Naiki, H., Hasegawa, K., Yamaguchi, I., Nakamura, H., Gejyo, F., and Nakakuki, K. (1998). Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry 37, 17882–17889 .9922155
[83] N?slund, J., Thyberg, J., Tjernberg, L.O., Wernstedt, C., Karlstr?m, A.R., Bogdanovic, N., Gandy, S.E., Lannfelt, L., Terenius, L., and Nordstedt, C. (1995). Characterization of stable complexes involving apolipoprotein E and the amyloid beta peptide in Alzheimer’s disease brain. Neuron 15, 219–228 .7619525
[84] O’Brien, K.D., Olin, K.L., Alpers, C.E., Chiu, W., Ferguson, M., Hudkins, K., Wight, T.N., and Chait, A. (1998). Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 98, 519–527 .9714108
[85] Obici, L., Franceschini, G., Calabresi, L., Giorgetti, S., Stoppini, M., Merlini, G., and Bellotti, V. (2006). Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 13, 191–205 .17107880
[86] Ozawa, D., Yagi, H., Ban, T., Kameda, A., Kawakami, T., Naiki, H., and Goto, Y. (2009). Destruction of amyloid fibrils of a beta2-microglobulin fragment by laser beam irradiation. J Biol Chem 284, 1009–1017 .19010783
[87] Pepys, M.B. (2006). Amyloidosis. Annu Rev Med 57, 223–241 .16409147
[88] Pepys, M.B., Booth, D.R., Huchinson, W.L., Gallimore, J.R., Collins, P.M., and Hohenester, E. (1997). Amyloid P component. A critical review. AMYLOID 4, 274–295 .
[89] Pepys, M.B., Herbert, J., Hutchinson, W.L., Tennent, G.A., Lachmann, H.J., Gallimore, J.R., Lovat, L.B., Bartfai, T., Alanine, A., Hertel, C., (2002). Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417, 254–259 .12015594
[90] Permanne, B., Perez, C., Soto, C., Frangione, B., and Wisniewski, T. (1997). Detection of apolipoprotein E/dimeric soluble amyloid beta complexes in Alzheimer’s disease brain supernatants. Biochem Biophys Res Commun 240, 715–720 .9398632
[91] Pham, C.L., Hatters, D.M., Lawrence, L.J., and Howlett, G.J. (2002). Cross-linking and amyloid formation by N- and C-terminal cysteine derivatives of human apolipoprotein C-II. Biochemistry 41, 14313–14322 .12450397
[92] Puchtler, H., and Sweat, F. (1962). Amidoblack as a stain for hemoglobin. Arch Pathol 73, 245–249 .14489118
[93] R?cken, C., Tautenhahn, J., Bühling, F., Sachwitz, D., V?ckler, S., Goette, A., and Bürger, T. (2006). Prevalence and pathology of amyloid in atherosclerotic arteries. Arterioscler Thromb Vasc Biol 26, 676–677 .16484604
[94] Ross, R. (1999). Atherosclerosis—an inflammatory disease. N Engl J Med 340, 115–126 .9887164
[95] Ryan, T.M., Griffin, M.D., Teoh, C.L., Ooi, J., and Howlett, G.J. (2011). High-Affinity Amphipathic Modulators of Amyloid Fibril Nucleation and Elongation. J Mol Biol 406, 416–429 .10.1016/j.jmb.2010.12.02321185302
[96] Ryan, T.M., Howlett, G.J., and Bailey, M.F. (2008). Fluorescence detection of a lipid-induced tetrameric intermediate in amyloid fibril formation by apolipoprotein C-II. J Biol Chem 283, 35118–35128 .18852267
[97] Ryan, T.M., Teoh, C.L., Griffin, M.D., Bailey, M.F., Schuck, P., and Howlett, G.J. (2010). Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils. J Mol Biol 399, 731–740 .20433849
[98] Saczynski, J.S., White, L., Peila, R.L., Rodriguez, B.L., and Launer, L.J. (2007). The relation between apolipoprotein A-I and dementia: the Honolulu-Asia aging study. Am J Epidemiol 165, 985–992 .17298957
[99] Saunders, A.M., Strittmatter, W.J., Schmechel, D., George-Hyslop, P.H., Pericak-Vance, M.A., Joo, S.H., Rosi, B.L., Gusella, J.F., Crapper-MacLachlan, D.R., Alberts, M.J., (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43, 1467–1472 .8350998
[100] Segrest, J.P., Garber, D.W., Brouillette, C.G., Harvey, S.C., and Anantharamaiah, G.M. (1994). The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem 45, 303–369 .8154372
[101] Sipe, J.D., and Cohen, A.S. (2000). Review: history of the amyloid fibril. J Struct Biol 130, 88–98 .10940217
[102] Soto, C., Casta?o, E.M., Prelli, F., Kumar, R.A., and Baumann, M. (1995). Apolipoprotein E increases the fibrillogenic potential of synthetic peptides derived from Alzheimer’s, gelsolin and AA amyloids. FEBS Lett 371, 110–114 .7672107
[103] Stadtman, E.R., and Levine, R.L. (2000). Protein oxidation. Ann N Y Acad Sci 899, 191–208 .10863540
[104] Stewart, C.R., Wilson, L.M., Zhang, Q., Pham, C.L., Waddington, L.J., Staples, M.K., Stapleton, D., Kelly, J.W., and Howlett, G.J. (2007). Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation. Biochemistry 46, 5552–5561 .17429947
[105] Strittmatter, W.J., Weisgraber, K.H., Huang, D.Y., Dong, L.M., Salvesen, G.S., Pericak-Vance, M., Schmechel, D., Saunders, A.M., Goldgaber, D., and Roses, A.D. (1993). Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90, 8098–8102 .8367470
[106] Tennent, G.A., Lovat, L.B., and Pepys, M.B. (1995). Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A 92, 4299–4303 .7753801
[107] Teoh, C.L., Pham, C.L., Todorova, N., Hung, A., Lincoln, C.N., Lees, E., Lam, Y.H., Binger, K.J., Thomson, N.H., Radford, S.E., (2011a). A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations. J Mol Biol 405, 1246–1266 .21146539
[108] Teoh, C.L., Yagi, H., Griffin, M.D., Goto, Y., and Howlett, G.J. (2011b). Visualization of polymorphism in apolipoprotein C-II amyloid fibrils. J Biochem 149, 67–74 .20889492
[109] Todorova, N., Hung, A., Maaser, S.M., Griffin, M.D., Karas, J., Howlett, G.J., and Yarovsky, I. (2010). Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II(60-70) peptide. Phys Chem Chem Phys 12, 14762–14774 .20938536
[110] Westermark, G.T., Johnson, K.H., and Westermark, P. (1999). Staining methods for identification of amyloid in tissue. Methods Enzymol 309, 3–25 .10507013
[111] Westermark, P., Mucchiano, G., Marthin, T., Johnson, K.H., and Sletten, K. (1995). Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am J Pathol 147, 1186–1192 .7485381
[112] Wilson, L.M., Mok, Y.F., Binger, K.J., Griffin, M.D., Mertens, H.D., Lin, F., Wade, J.D., Gooley, P.R., and Howlett, G.J. (2007). A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. J Mol Biol 366, 1639–1651 .17217959
[113] Wisniewski, T., Lalowski, M., Golabek, A., Vogel, T., and Frangione, B. (1995). Is Alzheimer’s disease an apolipoprotein E amyloidosis? Lancet 345, 956–958 .7715296
[114] Wong, Y.Q., Binger, K.J., Howlett, G.J., and Griffin, M.D. (2010). Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I. Proc Natl Acad Sci U S A 107, 1977–1982 .20133843
[115] Yagi, H., Ban, T., Morigaki, K., Naiki, H., and Goto, Y. (2007). Visualization and classification of amyloid beta supramolecular assemblies. Biochemistry 46, 15009–15017 .18044976
[116] Yagi, H., Ozawa, D., Sakurai, K., Kawakami, T., Kuyama, H., Nishimura, O., Shimanouchi, T., Kuboi, R., Naiki, H., and Goto, Y. (2010). Laser-induced propagation and destruction of amyloid beta fibrils. J Biol Chem 285, 19660–19667 .20406822
[117] Zhang, Q., Powers, E.T., Nieva, J., Huff, M.E., Dendle, M.A., Bieschke, J., Glabe, C.G., Eschenmoser, A., Wentworth, P. Jr, Lerner, R.A., (2004). Metabolite-initiated protein misfolding may trigger Alzheimer’s disease. Proc Natl Acad Sci U S A 101, 4752–4757 .15034169
[118] Zhao, H., Tuominen, E.K., and Kinnunen, P.K. (2004). Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43, 10302–10307 .15301528
[119] Zheng, L., Nukuna, B., Brennan, M.L., Sun, M., Goormastic, M., Settle, M., Schmitt, D., Fu, X., Thomson, L., Fox, P.L., (2004). Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 114, 529–541 .15314690
AI Summary AI Mindmap
PDF(356 KB)

Accesses

Citations

Detail

Sections
Recommended

/