Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts

Changhai Tian1,2(), Yongxiang Wang1,2, Lijun Sun1,2, Kangmu Ma1,2, Jialin C. Zheng1,2,3()

PDF(1485 KB)
PDF(1485 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (2) : 128-140. DOI: 10.1007/s13238-011-1012-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts

  • Changhai Tian1,2(), Yongxiang Wang1,2, Lijun Sun1,2, Kangmu Ma1,2, Jialin C. Zheng1,2,3()
Author information +
History +

Abstract

Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a “memory” of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a “memory” of the central nervous system, which confers additional potential upon neuronal differentiation.

Keywords

mouse astrocytes / induced pluripotent stem cells / neural progenitor cells / neuronal differentiation

Cite this article

Download citation ▾
Changhai Tian, Yongxiang Wang, Lijun Sun, Kangmu Ma, Jialin C. Zheng. Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts. Prot Cell, 2011, 2(2): 128‒140 https://doi.org/10.1007/s13238-011-1012-7

References

[1] Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bili?, J., Pekarik, V., Tiscornia, G., (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284 .18931654
[2] Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699-702 .18276851
[3] Baumann, K. (2010). Stem cells: holding on to the memories. Nat Rev Mol Cell Biol 11, 601.20717148
[4] Blackburn, D., Sargsyan, S., Monk, P.N., and Shaw, P.J. (2009). Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 57, 1251-1264 .19373940
[5] Caldwell, M.A., He, X., Wilkie, N., Pollack, S., Marshall, G., Wafford, K.A., and Svendsen, C.N. (2001). Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19, 475-479 .11329020
[6] Carey, B.W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M., and Jaenisch, R. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106, 157-162 .19109433
[7] Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A., and Lledo, P.M. (2003). Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6, 507-518 .12704391
[8] Fawcett, J.W. (1997). Astrocytic and neuronal factors affecting axon regeneration in the damaged central nervous system. Cell Tissue Res 290, 371-377 .9321700
[9] Ghorpade, A., Holter, S., Borgmann, K., Persidsky, R., and Wu, L. (2003). HIV-1 and IL-1 beta regulate Fas ligand expression in human astrocytes through the NF-kappa B pathway. J Neuroimmunol 141, 141-149 .12965265
[10] Ghosh, Z., Wilson, K.D., Wu, Y., Hu, S., Quertermous, T., and Wu, J.C. (2010). Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5, e8975.20126639
[11] Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250-264 .18423197
[12] Hirsch, E.C., Breidert, T., Rousselet, E., Hunot, S., Hartmann, A., and Michel, P.P. (2003). The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991, 214-228 .12846989
[13] Hu, Q., Friedrich, A.M., Johnson, L.V., and Clegg, D.O. (2010). Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells 28, 1981-1991 .20882530
[14] Jain, M., Armstrong, R.J., Tyers, P., Barker, R.A., and Rosser, A.E. (2003). GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp Neurol 182, 113-123 .12821381
[15] Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M., and McKay, R.D. (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10, 3129-3140 .8985182
[16] Kim, J.B., Greber, B., Araúzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H., and Sch?ler, H.R. (2009a). Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649-3 .19718018
[17] Kim, J.B., Sebastiano, V., Wu, G., Araúzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., (2009b). Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411-419 .19203577
[18] Kim, J.B., Zaehres, H., Araúzo-Bravo, M.J., and Sch?ler, H.R. (2009c). Generation of induced pluripotent stem cells from neural stem cells. Nat Protoc 4, 1464-1470 .19798081
[19] Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Araúzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646-650 .18594515
[20] Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., (2010). Epigenetic memory in induced pluripotent stem cells. Nature 467, 285-290 .20644535
[21] Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M., and McKay, R.D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18, 675-679 .10835609
[22] Lois, C., and Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145-1148 .8178174
[23] Moon, J.H., Yoon, B.S., Kim, B., Park, G., Jung, H.Y., Maeng, I., Jun, E.K., Yoo, S.J., Kim, A., Oh, S., (2008). Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1. Biochem Biophys Res Commun 371, 267-272 .18439910
[24] Pereira, C.F., Terranova, R., Ryan, N.K., Santos, J., Morris, K.J., Cui, W., Merkenschlager, M., and Fisher, A.G. (2008). Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet 4, e1000170.18773085
[25] Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28, 848-855 .20644536
[26] Ridet, J.L., Malhotra, S.K., Privat, A., and Gage, F.H. (1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20, 570-577 .9416670
[27] Rodríguez, J.J., Olabarria, M., Chvatal, A., and Verkhratsky, A. (2009). Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16, 378-385 .19057621
[28] Sher, F., Boddeke, E., and Copray, S. (2010). Ezh2 expression in astrocytes induces their dedifferentiation toward neural stem cells. Cell Reprogram . Oct27. [Epub ahead of print]20979531
[29] Stadtfeld, M., Brennand, K., and Hochedlinger, K. (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18, 890-894 .18501604
[30] Studer, L., Tabar, V., and McKay, R.D. (1998). Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1, 290-295 .10195162
[31] Takahashi, K., Okita, K., Nakagawa, M., and Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2, 3081-3089 .18079707
[32] Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 .16904174
[33] Tian, C., Gao, P., Zheng, Y., Yue, W., Wang, X., Jin, H., and Chen, Q. (2008). Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death. Cell Res 18, 458-471 .18157160
[34] Utikal, J., Maherali, N., Kulalert, W., and Hochedlinger, K. (2009). Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122, 3502-3510 .19723802
[35] Vicario-Abejón, C., Johe, K.K., Hazel, T.G., Collazo, D., and McKay, R.D. (1995). Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15, 105-114 .7619514
[36] Vitvitsky, V., Thomas, M., Ghorpade, A., Gendelman, H.E., and Banerjee, R. (2006). A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281, 35785-35793 .17005561
[37] Wakayama, T., Tabar, V., Rodriguez, I., Perry, A.C., Studer, L., and Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740-743 .11326103
[38] Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D.M., Jang, Y.Y., Dang, C.V., Spivak, J.L., Moliterno, A.R., and Cheng, L. (2009). Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114, 5473-5480 .19797525
[39] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 .18029452
AI Summary AI Mindmap
PDF(1485 KB)

Accesses

Citations

Detail

Sections
Recommended

/