[1] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination.
Acta Crystallogr D Biol Crystallogr 58, 1948–1954 .12393927
[2] Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant.
Plant Cell 9, 841–857 .9212461
[3]
Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr 50, 760–763 .15299374
[4] Collinge, M., and Boller, T. (2001). Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding.
Plant Mol Biol 46, 521–529 .11516145
[5] DeLano, W.L. (2002). The PyMOL Molecular Graphics System.
DeLano Scientific, San Carlos, CA, USA . http://www.pymol.org.
[6] Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S., and Dolferus, R. (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis.
Plant J 43, 745–757 .16115070
[7] Demura, T., and Fukuda, H. (2007). Transcriptional regulation in wood formation.
Trends Plant Sci 12, 64–70 .17224301
[8] Du, J., and Groover, A. (2010). Transcriptional regulation of secondary growth and wood formation.
J Integr Plant Biol 52, 17–27 .20074137
[9] Duval, M., Hsieh, T.F., Kim, S.Y., and Thomas, T.L. (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily.
Plant Mol Biol 50, 237–248 .12175016
[10] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr 60, 2126–2132 .15572765
[11] Ernst, H.A., Olsen, A.N., Larsen, S., and Lo Leggio, L. (2004). Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors.
EMBO Rep 5, 297–303 .15083810
[12] Fang, Y., You, J., Xie, K., Xie, W., and Xiong, L. (2008). Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice.
Mol Genet Genomics 280, 547–563 .18813954
[13] Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill, S., and Lydiate, D. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress.
Plant Mol Biol 53, 383–397 .14750526
[14] Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., and Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice.
Proc Natl Acad Sci U S A 103, 12987–12992 .16924117
[15] Hu, R., Qi, G., Kong, Y., Kong, D., Gao, Q., and Zhou, G. (2010). Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa.
BMC Plant Biol 10, 145–167 .20630103
[16] Jensen, M.K., Hagedorn, P.H., de Torres-Zabala, M., Grant, M.R., Rung, J.H., Collinge, D.B., and Lyngkjaer, M.F. (2008). Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis.
Plant J 56, 867–880 .18694460
[17] Jensen, M.K., Rung, J.H., Gregersen, P.L., Gjetting, T., Fuglsang, A.T., Hansen, M., Joehnk, N., Lyngkjaer, M.F., and Collinge, D.B. (2007). The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis.
Plant Mol Biol 65, 137–150 .17619150
[18] Kim, S.G., Kim, S.Y., and Park, C.M. (2007). A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis.
0032–0935 226, 64–654.
[19] Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.H., and Park, C.M. (2006). A membrane-bound NAC transcription factor regulates cell division in Arabidopsis.
Plant Cell 18, 3132–3144 .17098812
[20] Ko, J.H., Yang, S.H., Park, A.H., Lerouxel, O., and Han, K.H. (2007). ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana.
Plant J 50, 1035–1048 .17565617
[21] Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions.
Acta Crystallogr D Biol Crystallogr 60, 2256–2268 .15572779
[22] Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H., and Demura, T. (2005). Transcription switches for protoxylem and metaxylem vessel formation.
Genes Dev 19, 1855–1860 .16103214
[23] Laskowski, R., MacArthur, M., Moss, D., and Thornton, J. (1993). PROCHECK: a program to check the stereochemical quality of protein structures.
J Appl Cryst 26, 283–291 .
[24] Lu, P.-L., Chen, N.-Z., An, R., Su, Z., Qi, B.-S., Ren, F., Chen, J., and Wang, X.-C. (2007). A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in <i>Arabidopsis</i&gt.
0167–4412 63, 289–305 .
[25] Matthews, B.W. (1968). Solvent content of protein crystals.
J Mol Biol 33, 491–497 .5700707
[26] McCarthy, R.L., Zhong, R., and Ye, Z.H. (2009). MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis.
Plant Cell Physiol 50, 1950–1964 .19808805
[27] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software.
J Appl Crystallogr 40, 658–674 .19461840
[28] Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2007). NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis.
Plant Cell 19, 270–280 .17237351
[29] Müller, C.W. (2001). Transcription factors: global and detailed views.
Curr Opin Struct Biol 11, 26–32 .11179888
[30] Nakashima, K., Tran, L.S., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice.
Plant J 51, 617–630 .17587305
[31] Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H.Y., and Tsutsumi, N. (2005). OsNAC6, a member of the NAC gene family, is induced by various stresses in rice.
Genes Genet Syst 80, 135–139 .16172526
[32] Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). DNA-binding specificity and molecular functions of NAC transcription factors.
0168–9452 169, 785–797 .
[33] Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P.,
(2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.
DNA Res 10, 239–247 .15029955
[34] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In:
Macromolecular Crystallography, part A . C.W. Carter Jr., and R.M. Sweet, eds.
San Diego, CA:
Academic Press. 307–326 .
[35] Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R.,
(2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
Science 290, 2105–2110 .11118137
[36] cit36Sablowski, R.W.M., and Meyerowitz, E.M. (1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA.
Cell 92, 93–103 .9489703
[37] Souer, E., van Houwelingen, A., Kloos, D., Mol, J., and Koes, R. (1996). The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries.
Cell 85, 159–170 .8612269
[38] Sperotto, R.A., Ricachenevsky, F.K., Duarte, G.L., Boff, T., Lopes, K.L., Sperb, E.R., Grusak, M.A., and Fett, J.P. (2009). Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor.
0032–0935 230, 985–1002 .
[39] Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., and Nakashima, K. (2010). The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice.
Mol Genet Genomics 284, 173–183 .20632034
[40] Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.
Plant Cell 16, 2481–2498 .15319476
[41] Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., and Dubcovsky, J. (2006). A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat.
Science 314, 1298–1301 .17124321
[42] Wang, X.e., Basnayake, B.M.V.S., Zhang, H., Li, G., Li, W., Virk, N., Mengiste, T., and Song, F. (2009). The Arabidopsis ATAF1, a NAC Transcription Factor, Is a Negative Regulator of Defense Responses Against Necrotrophic Fungal and Bacterial Pathogens.
Molecular Plant-Microbe Interactions 22, 1227–1238 .
[43] Weir, I., Lu, J., Cook, H., Causier, B., Schwarz-Sommer, Z., and Davies, B. (2004). CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum.
0950–1991 131, 915–922 .
[44] Wu, Y., Deng, Z., Lai, J., Zhang, Y., Yang, C., Yin, B., Zhao, Q., Zhang, L., Li, Y., Yang, C.,
(2009). Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses.
Cell Res 19, 1279–1290 .19752887
[45] Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.
Genes Dev 14, 3024–3036 .11114891
[46] Xiong, Y., Liu, T., Tian, C., Sun, S., Li, J., and Chen, M. (2005). Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots.
Plant Mol Biol 59, 191–203 .16217612
[47] Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Tomo, Y.,
(2005). Solution structure of an Arabidopsis WRKY DNA binding domain.
Plant Cell 17, 944–956 .15705956
[48] Zhong, R., Demura, T., and Ye, Z.H. (2006). SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis.
Plant Cell 18, 3158–3170 .17114348
[49] Zhong, R., Richardson, E.A., and Ye, Z.H. (2007a). The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis.
Plant Cell 19, 2776–2792 .17890373
[50] Zhong, R., Richardson, E.A., and Ye, Z.H. (2007b). Two NAC domain transcription factors, SND1 and NST1,
function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225, 1603–1611 .