HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus

Lifen Wang1,2, Yi Zhan3, Eli Song1, Yong Yu1,2, Yaming Jiu3, Wen Du1, Jingze Lu1, Pingsheng Liu1, Pingyong Xu1(), Tao Xu1,3()

Protein Cell ›› 2011, Vol. 2 ›› Issue (1) : 74-85.

PDF(835 KB)
Protein Cell All Journals
PDF(835 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (1) : 74-85. DOI: 10.1007/s13238-011-1008-3
RESEARCH ARTICLE
RESEARCH ARTICLE

HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus

  • Lifen Wang1,2, Yi Zhan3, Eli Song1, Yong Yu1,2, Yaming Jiu3, Wen Du1, Jingze Lu1, Pingsheng Liu1, Pingyong Xu1(), Tao Xu1,3()
Author information +
History +

Abstract

Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans-Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.

Keywords

HID-1 / Golgi / peripheral membrane protein / fluorescent recovery after photobleaching / N-myristoylation

Cite this article

Download citation ▾
Lifen Wang, Yi Zhan, Eli Song, Yong Yu, Yaming Jiu, Wen Du, Jingze Lu, Pingsheng Liu, Pingyong Xu, Tao Xu. HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus. Prot Cell, 2011, 2(1): 74‒85 https://doi.org/10.1007/s13238-011-1008-3

References

[1] Ailion, M., and Thomas, J.H. (2003). Isolation and characterization of high-temperature-induced Dauer formation mutants in Caenorhabditis elegans. Genetics 165, 127–144 .14504222
[2] Anders, N., and Jürgens, G. (2008). Large ARF guanine nucleotide exchange factors in membrane trafficking. Cell Mol Life Sci 65, 3433–3445 .18604628
[3] Apfeld, J., and Kenyon, C. (1998). Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95, 199–210 .9790527
[4] Birnby, D.A., Link, E.M., Vowels, J.J., Tian, H., Colacurcio, P.L., and Thomas, J.H. (2000). A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics 155, 85–104 .10790386
[5] Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S., and Schreiber, S.L. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 .8008069
[6] Campellone, K.G., Webb, N.J., Znameroski, E.A., and Welch, M.D. (2008). WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161 .18614018
[7] Cassada, R.C., and Russell, R.L. (1975). The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46, 326–342 .1183723
[8] Choi, J., Chen, J., Schreiber, S.L., and Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 .8662507
[9] Cohn, D.H., Ehtesham, N., Krakow, D., Unger, S., Shanske, A., Reinker, K., Powell, B.R., and Rimoin, D.L. (2003). Mental retardation and abnormal skeletal development (Dyggve-Melchior-Clausen dysplasia) due to mutations in a novel, evolutionarily conserved gene. Am J Hum Genet 72, 419–428 .12491225
[10] Colombo, M.I., Gelberman, S.C., Whiteheart, S.W., and Stahl, P.D. (1998). N-ethylmaleimide-sensitive factor-dependent alpha-SNAP release, an early event in the docking/fusion process, is not regulated by Rab GTPases. J Biol Chem 273, 1334–1338 .9430666
[11] de Jonge, H.R., Hogema, B., and Tilly, B.C. (2000). Protein N-myristoylation: critical role in apoptosis and salt tolerance. Sci STKE 2000, pe1.11752628
[12] Dimitrov, A., Paupe, V., Gueudry, C., Sibarita, J.B., Raposo, G., Vielemeyer, O., Gilbert, T., Csaba, Z., Attie-Bitach, T., Cormier-Daire, V., (2009). The gene responsible for Dyggve-Melchior-Clausen syndrome encodes a novel peripheral membrane protein dynamically associated with the Golgi apparatus. Hum Mol Genet 18, 440–453 .18996921
[13] Dube, D.H., de Graffenried, C.L., and Kohler, J.J. (2006). Regulating cell surface glycosylation with a small-molecule switch. Methods Enzymol 415, 213–229 .17116477
[14] El Ghouzzi, V., Dagoneau, N., Kinning, E., Thauvin-Robinet, C., Chemaitilly, W., Prost-Squarcioni, C., Al-Gazali, L.I., Verloes, A., Le Merrer, M., Munnich, A., (2003). Mutations in a novel gene Dymeclin (FLJ20071) are responsible for Dyggve-Melchior-Clausen syndrome. Hum Mol Genet 12, 357–364 .12554689
[15] Fielenbach, N., and Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22, 2149–2165 .18708575
[16] Gleeson, P.A., Teasdale, R.D., and Burke, J. (1994). Targeting of proteins to the Golgi apparatus. Glycoconj J 11, 381–394 .7696842
[17] Humphrey, J.S., Peters, P.J., Yuan, L.C., and Bonifacino, J.S. (1993). Localization of TGN38 to the trans-Golgi network: involvement of a cytoplasmic tyrosine-containing sequence. J Cell Biol 120, 1123–1135 .8436587
[18] Inoue, T., and Thomas, J.H. (2000a). Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics 156, 1035–1046 .11063683
[19] Inoue, T., and Thomas, J.H. (2000b). Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation. Dev Biol 217, 192–204 .10625546
[20] Killisch, I., Steinlein, P., R?misch, K., Hollinshead, R., Beug, H., and Griffiths, G. (1992). Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome. J Cell Sci 103, 211–232 .1429906
[21] Kjer-Nielsen, L., van Vliet, C., Erlich, R., Toh, B.H., and Gleeson, P.A. (1999). The Golgi-targeting sequence of the peripheral membrane protein p230. J Cell Sci 112, 1645–1654 .10318758
[22] Koh, S., Yamamoto, A., Inoue, A., Inoue, Y., Akagawa, K., Kawamura, Y., Kawamoto, K., and Tashiro, Y. (1993). Immunoelectron microscopic localization of the HPC-1 antigen in rat cerebellum. J Neurocytol 22, 995–1005 .8301329
[23] Lewis, J.L., Dong, M., Earles, C.A., and Chapman, E.R. (2001). The transmembrane domain of syntaxin 1A is critical for cytoplasmic domain protein-protein interactions. J Biol Chem 276, 15458–15465 .11278966
[24] Liang, Z., and Li, G. (2000). Mouse prenylated Rab acceptor is a novel Golgi membrane protein. Biochem Biophys Res Commun 275, 509–516 .10964695
[25] Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., and Klausner, R.D. (1991). Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67, 601–616 .1682055
[26] Lodge, J.K., Jackson-Machelski, E., Devadas, B., Zupec, M.E., Getman, D.P., Kishore, N., Freeman, S.K., McWherter, C.A., Sikorski, J.A., and Gordon, J.I. (1997). N-myristoylation of Arf proteins in Candida albicans: an in vivo assay for evaluating antifungal inhibitors of myristoyl-CoA: protein N-myristoyltransferase. Microbiology 143, 357–366 .9043113
[27] Lorenz, H., Hailey, D.W., Wunder, C., and Lippincott-Schwartz, J. (2006). The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat Protoc 1, 276–279 .17406244
[28] Luo, X., Feng, L., Jiang, X., Xiao, F., Wang, Z., Feng, G.S., and Chen, Y. (2008). Characterization of the topology and functional domains of RKTG. Biochem J 414, 399–406 .18547165
[29] Luzio, J.P., Brake, B., Banting, G., Howell, K.E., Braghetta, P., and Stanley, K.K. (1990). Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem J 270, 97–102 .2204342
[30] Mironov, A., and Pavelka, M. (2008). The Golgi Apparatus: State of the Art 110 Years After Camillo Golgi's Discovery. New York: Springer-Verlag Gmbh, Wien.
[31] Nakamura, N., Rabouille, C., Watson, R., Nilsson, T., Hui, N., Slusarewicz, P., Kreis, T.E., and Warren, G. (1995). Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131, 1715–1726 .8557739
[32] Ponnambalam, S., Girotti, M., Yaspo, M.L., Owen, C.E., Perry, A.C., Suganuma, T., Nilsson, T., Fried, M., Banting, G., and Warren, G. (1996). Primate homologues of rat TGN38: primary structure, expression and functional implications. J Cell Sci 109, 675–685 .8907712
[33] Riddle, D. (1997). C. elegans II. New York: CSHL Press.
[34] Robinson, M.S., Sahlender, D.A., and Foster, S.D. (2010). Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell 18, 324–331 .20159602
[35] Standaert, R.F., Galat, A., Verdine, G.L., and Schreiber, S.L. (1990). Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature 346, 671–674 .1696686
[36] Suh, B.C., Inoue, T., Meyer, T., and Hille, B. (2006). Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 .16990515
[37] Trus, M., Wiser, O., Goodnough, M.C., and Atlas, D. (2001). The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca(2+) channels. Neuroscience 104, 599–607 .11377859
[38] Waters, M.G., Clary, D.O., and Rothman, J.E. (1992). A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J Cell Biol 118, 1015–1026 .1512287
[39] Wright, M.H., Heal, W.P., Mann, D.J., and Tate, E.W. (2009). Protein myristoylation in health and disease. J Chem Biol 3, 19–35 .19898886
[40] Yamaguchi, N., and Fukuda, M.N. (1995). Golgi retention mechanism of beta-1,4-galactosyltransferase. Membrane-spanning domain-dependent homodimerization and association with alpha- and beta-tubulins. J Biol Chem 270, 12170–12176 .7744867
[41] Yu, Y., Wang, L.F., Jiu, Y.M., Zhan, Y., Liu, L., Xia, Z.P., Song, E.L., Xu, P.Y., Xu, T. (2011). HID-1 is a novel player in the regulation of neuropeptide sorting. Biochem J. Doi: 10.1042/BJ20110027.
[42] Zerial, M., Melancon, P., Schneider, C., and Garoff, H. (1986). The transmembrane segment of the human transferrin receptor functions as a signal peptide. EMBO J 5, 1543–1550 .3017701
AI Summary AI Mindmap
PDF(835 KB)

1523

Accesses

12

Citations

Detail

Sections
Recommended

/