HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus

Lifen Wang1,2, Yi Zhan3, Eli Song1, Yong Yu1,2, Yaming Jiu3, Wen Du1, Jingze Lu1, Pingsheng Liu1, Pingyong Xu1(), Tao Xu1,3()

PDF(835 KB)
PDF(835 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (1) : 74-85. DOI: 10.1007/s13238-011-1008-3
RESEARCH ARTICLE
RESEARCH ARTICLE

HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus

  • Lifen Wang1,2, Yi Zhan3, Eli Song1, Yong Yu1,2, Yaming Jiu3, Wen Du1, Jingze Lu1, Pingsheng Liu1, Pingyong Xu1(), Tao Xu1,3()
Author information +
History +

Abstract

Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans-Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.

Keywords

HID-1 / Golgi / peripheral membrane protein / fluorescent recovery after photobleaching / N-myristoylation

Cite this article

Download citation ▾
Lifen Wang, Yi Zhan, Eli Song, Yong Yu, Yaming Jiu, Wen Du, Jingze Lu, Pingsheng Liu, Pingyong Xu, Tao Xu. HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus. Prot Cell, 2011, 2(1): 74‒85 https://doi.org/10.1007/s13238-011-1008-3

References

[1] Ailion, M., and Thomas, J.H. (2003). Isolation and characterization of high-temperature-induced Dauer formation mutants in Caenorhabditis elegans. Genetics 165, 127–144 .14504222
[2] Anders, N., and Jürgens, G. (2008). Large ARF guanine nucleotide exchange factors in membrane trafficking. Cell Mol Life Sci 65, 3433–3445 .18604628
[3] Apfeld, J., and Kenyon, C. (1998). Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95, 199–210 .9790527
[4] Birnby, D.A., Link, E.M., Vowels, J.J., Tian, H., Colacurcio, P.L., and Thomas, J.H. (2000). A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics 155, 85–104 .10790386
[5] Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S., and Schreiber, S.L. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 .8008069
[6] Campellone, K.G., Webb, N.J., Znameroski, E.A., and Welch, M.D. (2008). WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161 .18614018
[7] Cassada, R.C., and Russell, R.L. (1975). The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46, 326–342 .1183723
[8] Choi, J., Chen, J., Schreiber, S.L., and Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 .8662507
[9] Cohn, D.H., Ehtesham, N., Krakow, D., Unger, S., Shanske, A., Reinker, K., Powell, B.R., and Rimoin, D.L. (2003). Mental retardation and abnormal skeletal development (Dyggve-Melchior-Clausen dysplasia) due to mutations in a novel, evolutionarily conserved gene. Am J Hum Genet 72, 419–428 .12491225
[10] Colombo, M.I., Gelberman, S.C., Whiteheart, S.W., and Stahl, P.D. (1998). N-ethylmaleimide-sensitive factor-dependent alpha-SNAP release, an early event in the docking/fusion process, is not regulated by Rab GTPases. J Biol Chem 273, 1334–1338 .9430666
[11] de Jonge, H.R., Hogema, B., and Tilly, B.C. (2000). Protein N-myristoylation: critical role in apoptosis and salt tolerance. Sci STKE 2000, pe1.11752628
[12] Dimitrov, A., Paupe, V., Gueudry, C., Sibarita, J.B., Raposo, G., Vielemeyer, O., Gilbert, T., Csaba, Z., Attie-Bitach, T., Cormier-Daire, V., (2009). The gene responsible for Dyggve-Melchior-Clausen syndrome encodes a novel peripheral membrane protein dynamically associated with the Golgi apparatus. Hum Mol Genet 18, 440–453 .18996921
[13] Dube, D.H., de Graffenried, C.L., and Kohler, J.J. (2006). Regulating cell surface glycosylation with a small-molecule switch. Methods Enzymol 415, 213–229 .17116477
[14] El Ghouzzi, V., Dagoneau, N., Kinning, E., Thauvin-Robinet, C., Chemaitilly, W., Prost-Squarcioni, C., Al-Gazali, L.I., Verloes, A., Le Merrer, M., Munnich, A., (2003). Mutations in a novel gene Dymeclin (FLJ20071) are responsible for Dyggve-Melchior-Clausen syndrome. Hum Mol Genet 12, 357–364 .12554689
[15] Fielenbach, N., and Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22, 2149–2165 .18708575
[16] Gleeson, P.A., Teasdale, R.D., and Burke, J. (1994). Targeting of proteins to the Golgi apparatus. Glycoconj J 11, 381–394 .7696842
[17] Humphrey, J.S., Peters, P.J., Yuan, L.C., and Bonifacino, J.S. (1993). Localization of TGN38 to the trans-Golgi network: involvement of a cytoplasmic tyrosine-containing sequence. J Cell Biol 120, 1123–1135 .8436587
[18] Inoue, T., and Thomas, J.H. (2000a). Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics 156, 1035–1046 .11063683
[19] Inoue, T., and Thomas, J.H. (2000b). Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation. Dev Biol 217, 192–204 .10625546
[20] Killisch, I., Steinlein, P., R?misch, K., Hollinshead, R., Beug, H., and Griffiths, G. (1992). Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome. J Cell Sci 103, 211–232 .1429906
[21] Kjer-Nielsen, L., van Vliet, C., Erlich, R., Toh, B.H., and Gleeson, P.A. (1999). The Golgi-targeting sequence of the peripheral membrane protein p230. J Cell Sci 112, 1645–1654 .10318758
[22] Koh, S., Yamamoto, A., Inoue, A., Inoue, Y., Akagawa, K., Kawamura, Y., Kawamoto, K., and Tashiro, Y. (1993). Immunoelectron microscopic localization of the HPC-1 antigen in rat cerebellum. J Neurocytol 22, 995–1005 .8301329
[23] Lewis, J.L., Dong, M., Earles, C.A., and Chapman, E.R. (2001). The transmembrane domain of syntaxin 1A is critical for cytoplasmic domain protein-protein interactions. J Biol Chem 276, 15458–15465 .11278966
[24] Liang, Z., and Li, G. (2000). Mouse prenylated Rab acceptor is a novel Golgi membrane protein. Biochem Biophys Res Commun 275, 509–516 .10964695
[25] Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., and Klausner, R.D. (1991). Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67, 601–616 .1682055
[26] Lodge, J.K., Jackson-Machelski, E., Devadas, B., Zupec, M.E., Getman, D.P., Kishore, N., Freeman, S.K., McWherter, C.A., Sikorski, J.A., and Gordon, J.I. (1997). N-myristoylation of Arf proteins in Candida albicans: an in vivo assay for evaluating antifungal inhibitors of myristoyl-CoA: protein N-myristoyltransferase. Microbiology 143, 357–366 .9043113
[27] Lorenz, H., Hailey, D.W., Wunder, C., and Lippincott-Schwartz, J. (2006). The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat Protoc 1, 276–279 .17406244
[28] Luo, X., Feng, L., Jiang, X., Xiao, F., Wang, Z., Feng, G.S., and Chen, Y. (2008). Characterization of the topology and functional domains of RKTG. Biochem J 414, 399–406 .18547165
[29] Luzio, J.P., Brake, B., Banting, G., Howell, K.E., Braghetta, P., and Stanley, K.K. (1990). Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem J 270, 97–102 .2204342
[30] Mironov, A., and Pavelka, M. (2008). The Golgi Apparatus: State of the Art 110 Years After Camillo Golgi's Discovery. New York: Springer-Verlag Gmbh, Wien.
[31] Nakamura, N., Rabouille, C., Watson, R., Nilsson, T., Hui, N., Slusarewicz, P., Kreis, T.E., and Warren, G. (1995). Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131, 1715–1726 .8557739
[32] Ponnambalam, S., Girotti, M., Yaspo, M.L., Owen, C.E., Perry, A.C., Suganuma, T., Nilsson, T., Fried, M., Banting, G., and Warren, G. (1996). Primate homologues of rat TGN38: primary structure, expression and functional implications. J Cell Sci 109, 675–685 .8907712
[33] Riddle, D. (1997). C. elegans II. New York: CSHL Press.
[34] Robinson, M.S., Sahlender, D.A., and Foster, S.D. (2010). Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell 18, 324–331 .20159602
[35] Standaert, R.F., Galat, A., Verdine, G.L., and Schreiber, S.L. (1990). Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature 346, 671–674 .1696686
[36] Suh, B.C., Inoue, T., Meyer, T., and Hille, B. (2006). Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 .16990515
[37] Trus, M., Wiser, O., Goodnough, M.C., and Atlas, D. (2001). The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca(2+) channels. Neuroscience 104, 599–607 .11377859
[38] Waters, M.G., Clary, D.O., and Rothman, J.E. (1992). A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J Cell Biol 118, 1015–1026 .1512287
[39] Wright, M.H., Heal, W.P., Mann, D.J., and Tate, E.W. (2009). Protein myristoylation in health and disease. J Chem Biol 3, 19–35 .19898886
[40] Yamaguchi, N., and Fukuda, M.N. (1995). Golgi retention mechanism of beta-1,4-galactosyltransferase. Membrane-spanning domain-dependent homodimerization and association with alpha- and beta-tubulins. J Biol Chem 270, 12170–12176 .7744867
[41] Yu, Y., Wang, L.F., Jiu, Y.M., Zhan, Y., Liu, L., Xia, Z.P., Song, E.L., Xu, P.Y., Xu, T. (2011). HID-1 is a novel player in the regulation of neuropeptide sorting. Biochem J. Doi: 10.1042/BJ20110027.
[42] Zerial, M., Melancon, P., Schneider, C., and Garoff, H. (1986). The transmembrane segment of the human transferrin receptor functions as a signal peptide. EMBO J 5, 1543–1550 .3017701
AI Summary AI Mindmap
PDF(835 KB)

Accesses

Citations

Detail

Sections
Recommended

/