High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation

Ruth K. Moysey1,2, Yi Li1, Samantha J. Paston1, Emma E. Baston1, Malkit S. Sami1, Brian J. Cameron1, Jessie Gavarret1, Penio Todorov1, Annelise Vuidepot1, Steven M. Dunn1,3, Nicholas J. Pumphrey1,4, Katherine J. Adams1, Fang Yuan1, Rebecca E. Dennis1, Deborah H. Sutton1, Andy D. Johnson1, Joanna E. Brewer1,5, Rebecca Ashfield1, Nikolai M. Lissin1, Bent K. Jakobsen1()

PDF(385 KB)
PDF(385 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (12) : 1118-1127. DOI: 10.1007/s13238-010-0144-5
RESEARCH ARTICLE
RESEARCH ARTICLE

High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation

  • Ruth K. Moysey1,2, Yi Li1, Samantha J. Paston1, Emma E. Baston1, Malkit S. Sami1, Brian J. Cameron1, Jessie Gavarret1, Penio Todorov1, Annelise Vuidepot1, Steven M. Dunn1,3, Nicholas J. Pumphrey1,4, Katherine J. Adams1, Fang Yuan1, Rebecca E. Dennis1, Deborah H. Sutton1, Andy D. Johnson1, Joanna E. Brewer1,5, Rebecca Ashfield1, Nikolai M. Lissin1, Bent K. Jakobsen1()
Author information +
History +

Abstract

Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin superfamily receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t1/2) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8+ cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with sub-nanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8+ CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

Keywords

CD8+ T cells / cellular activation / autoimmunity / cell surface molecules / binding affinity / phage display

Cite this article

Download citation ▾
Ruth K. Moysey, Yi Li, Samantha J. Paston, Emma E. Baston, Malkit S. Sami, Brian J. Cameron, Jessie Gavarret, Penio Todorov, Annelise Vuidepot, Steven M. Dunn, Nicholas J. Pumphrey, Katherine J. Adams, Fang Yuan, Rebecca E. Dennis, Deborah H. Sutton, Andy D. Johnson, Joanna E. Brewer, Rebecca Ashfield, Nikolai M. Lissin, Bent K. Jakobsen. High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation. Prot Cell, 2010, 1(12): 1118‒1127 https://doi.org/10.1007/s13238-010-0144-5

References

[1] Bernardeau, K., Gouard, S., David, G., Ruellan, A.L., Devys, A., Barbet, J., Bonneville, M., Cherel, M., and Davodeau, F. (2005). Assessment of CD8 involvement in T cell clone avidity by direct measurement of HLA-A2/Mage3 complex density using a high-affinity TCR like monoclonal antibody. Eur J Immunol 35, 2864–2875 10.1002/eji.200526307.
[2] Binstadt, B.A., Brumbaugh, K.M., Dick, C.J., Scharenberg, A.M., Williams, B.L., Colonna, M., Lanier, L.L., Kinet, J.P., Abraham, R.T., and Leibson, P.J. (1996). Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 5, 629–638 10.1016/S1074-7613(00)80276-9.
[3] Borges, L., and Cosman, D. (2000). LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev 11, 209–217 10.1016/S1359-6101(00)00007-1.
[4] Buslepp, J., Kerry, S.E., Loftus, D., Frelinger, J.A., Appella, E., and Collins, E.J. (2003). High affinity xenoreactive TCR:MHC interaction recruits CD8 in absence of binding to MHC. J Immunol 170, 373–383 .
[5] Cella, M., Nakajima, H., Facchetti, F., Hoffmann, T., and Colonna, M. (2000). ILT receptors at the interface between lymphoid and myeloid cells. Curr Top Microbiol Immunol 251, 161–166 .
[6] Chang, H.C., Tan, K., and Hsu, Y.M. (2006). CD8alphabeta has two distinct binding modes of interaction with peptide-major histocompatibility complex class I. J Biol Chem 281, 28090–28096 10.1074/jbc.M604931200.
[7] Chapman, T.L., Heikema, A.P., West, A.P. Jr, and Bjorkman, P.J. (2000). Crystal structure and ligand binding properties of the D1D2 region of the inhibitory receptor LIR-1 (ILT2). Immunity 13, 727–736 10.1016/S1074-7613(00)00071-6.
[8] Clackson, T., Hoogenboom, H.R., Griffiths, A.D., and Winter, G. (1991). Making antibody fragments using phage display libraries. Nature 352, 624–628 10.1038/352624a0.
[9] Cole, D.K., Rizkallah, P.J., Sami, M., Lissin, N.M., Gao, F., Bell, J.I., Boulter, J.M., Glick, M., Vuidepot, A.L., Jakobsen, B.K., (2005). Crystallization and preliminary X-ray structural studies of a high-affinity CD8alphaalpha co-receptor to pMHC. Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 285–287 10.1107/S1744309105002988.
[10] Colonna, M., Navarro, F., Bellon, T., Llano, M., Garcia, P., Samaridis, J., Angman, L., Cella, M., and Lopez-Botet, M. (1997). A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 186, 1809–1818 10.1084/jem.186.11.1809.
[11] Dunn, S.M., Rizkallah, P.J., Baston, E., Mahon, T., Cameron, B., Moysey, R., Gao, F., Sami, M., Boulter, J., Li, Y., (2006). Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity. Protein Sci 15, 710–721 10.1110/ps.051936406.
[12] Fanger, N.A., Borges, L., and Cosman, D. (1999). The leukocyte immunoglobulin-like receptors (LIRs): a new family of immune regulators. J Leukoc Biol 66, 231–236 .
[13] Fee, C.J., and Van Alstine, J.M. (2004). Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjug Chem 15, 1304–1313 10.1021/bc049843w.
[14] Gaberc-Porekar, V., Zore, I., Podobnik, B., and Menart, V. (2008). Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opin Drug Discov Devel 11, 242–250 .
[15] Gao, G.F., and Jakobsen, B.K. (2000). Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol Today 21, 630–636 10.1016/S0167-5699(00)01750-3.
[16] Garboczi, D.N., Hung, D.T., and Wiley, D.C. (1992). HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA 89, 3429–3433 10.1073/pnas.89.8.3429.
[17] Hamerman, J.A., and Lanier, L.L. (2006). Inhibition of immune responses by ITAM-bearing receptors.PMID: 16449667Sci STKE 2006, re110.1126/stke.3202006re1.
[18] Ivashkiv, L.B. (2009). Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 10, 340–347 10.1038/ni.1706.
[19] Kerry, S.E., Buslepp, J., Cramer, L.A., Maile, R., Hensley, L.L., Nielsen, A.I., Kavathas, P., Vilen, B.J., Collins, E.J., and Frelinger, J.A. (2003). Interplay between TCR affinity and necessity of coreceptor ligation: high-affinity peptide-MHC/TCR interaction overcomes lack of CD8 engagement. J Immunol 171, 4493–4503 .
[20] Laugel, B., Price, D.A., Milicic, A., and Sewell, A.K. (2007). CD8 exerts differential effects on the deployment of cytotoxic T lymphocyte effector functions. Eur J Immunol 37, 905–913 10.1002/eji.200636718.
[21] Lepin, E.J., Bastin, J.M., Allan, D.S., Roncador, G., Braud, V.M., Mason, D.Y., van der Merwe, P.A., McMichael, A.J., Bell, J.I., Powis, S.H., (2000). Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur J Immunol 30, 3552–3561 10.1002/1521-4141(200012)30:12<3552::AID-IMMU3552>3.0.CO;2-L.
[22] Li, Y., Moysey, R., Molloy, P.E., Vuidepot, A.L., Mahon, T., Baston, E., Dunn, S., Liddy, N., Jacob, J., Jakobsen, B.K., (2005). Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 23, 349–354 10.1038/nbt1070.
[23] McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 10.1038/348552a0.
[24] McNicol, A.M., Bendle, G., Holler, A., Matjeka, T., Dalton, E., Rettig, L., Zamoyska, R., Uckert, W., Xue, S.A., and Stauss, H.J. (2007). CD8alpha/alpha homodimers fail to function as co-receptor for a CD8-dependent TCR. Eur J Immunol 37, 1634–1641 10.1002/eji.200636900.
[25] Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R.A., and Margulies, D.H. (2002). Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20, 853–885 10.1146/annurev.immunol.20.100301.064812.
[26] Navarro, F., Llano, M., Bellon, T., Colonna, M., Geraghty, D.E., and Lopez-Botet, M. (1999). The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. Eur J Immunol 29, 277–283 10.1002/(SICI)1521-4141(199901)29:01<277::AID-IMMU277>3.0.CO;2-4.
[27] Roberts, M.J., Bentley, M.D., and Harris, J.M. (2002). Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54, 459–476 10.1016/S0169-409X(02)00022-4.
[28] Saverino, D., Fabbi, M., Ghiotto, F., Merlo, A., Bruno, S., Zarcone, D., Tenca, C., Tiso, M., Santoro, G., Anastasi, G., (2000). The CD85/LIR-1/ILT2 inhibitory receptor is expressed by all human T lymphocytes and down-regulates their functions. J Immunol 165, 3742–3755 .
[29] Sewell, A.K., Gerth, U.C., Price, D.A., Purbhoo, M.A., Boulter, J.M., Gao, G.F., Bell, J.I., Phillips, R.E., and Jakobsen, B.K. (1999). Antagonism of cytotoxic T-lymphocyte activation by soluble CD8. Nat Med 5, 399–404 10.1038/7398.
[30] Veronese, F.M., and Mero, A. (2008). The impact of PEGylation on biological therapies. BioDrugs 22, 315–329 10.2165/00063030-200822050-00004.
[31] Willcox, B.E., Gao, G.F., Wyer, J.R., O'Callaghan, C.A., Boulter, J.M., Jones, E.Y., van der Merwe, P.A., Bell, J.I., and Jakobsen, B.K. (1999). Production of soluble alphabeta T-cell receptor heterodimers suitable for biophysical analysis of ligand binding. Protein Sci 8, 2418–2423 10.1110/ps.8.11.2418.
[32] Willcox, B.E., Thomas, L.M., and Bjorkman, P.J. (2003). Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol 4, 913–919 10.1038/ni961.
[33] Willcox, B.E., Thomas, L.M., Chapman, T.L., Heikema, A.P., West, A.P. Jr, and Bjorkman, P.J. (2002). Crystal structure of LIR-2 (ILT4) at 1.8 A: differences from LIR-1 (ILT2) in regions implicated in the binding of the Human Cytomegalovirus class I MHC homolog UL18. BMC Struct Biol 2, 610.1186/1472-6807-2-6.
[34] Wyer, J.R., Willcox, B.E., Gao, G.F., Gerth, U.C., Davis, S.J., Bell, J.I., van der Merwe, P.A., and Jakobsen, B.K. (1999). T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 10.1016/S1074-7613(00)80022-9.
[35] Zhang, Y., Liu, Y., Moxley, K.M., Golden-Mason, L., Hughes, M.G., Liu, T., Heemskerk, M.H., Rosen, H.R., Nishimura, M.I., and Gale, M. (2010). Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog 6, e100101810.1371/journal.ppat.1001018.
AI Summary AI Mindmap
PDF(385 KB)

Accesses

Citations

Detail

Sections
Recommended

/