[1] Allred, D.C., Clark, G.M., Elledge, R., Fuqua, S.A., Brown, R.W., Chamness, G.C., Osborne, C.K., and McGuire, W.L. (1993). Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer.
J Natl Cancer Inst 85, 200-206 .8423624
[2] Araki, S., Eitel, J.A., Batuello, C.N., Bijangi-Vishehsaraei, K., Xie, X.J., Danielpour, D., Pollok, K.E., Boothman, D.A., and Mayo, L.D. (2010). TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer.
J Clin Invest 120, 290-302 .19955655
[3] Ard, P.G., Chatterjee, C., Kunjibettu, S., Adside, L.R., Gralinski, L.E., and McMahon, S.B. (2002). Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes.
Mol Cell Biol 22, 5650-5661 .12138177
[4] Argentini, M., Barboule, N., and Wasylyk, B. (2000). The contribution of the RING finger domain of MDM2 to cell cycle progression.
Oncogene 19, 3849-3857 .10951578
[5] Barak, Y., Gottlieb, E., Juven-Gershon, T., and Oren, M. (1994). Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential.
Genes Dev 8, 1739-1749 .7958853
[6] Blattner, C., Hay, T., Meek, D.W., and Lane, D.P. (2002). Hypophosphorylation of Mdm2 augments p53 stability.
Mol Cell Biol 22, 6170-6182 .12167711
[7] Blaydes, J.P., and Wynford-Thomas, D. (1998). The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2.
Oncogene 16, 3317-3322 .9681831
[8] Bond, G.L., Hu, W., Bond, E.E., Robins, H., Lutzker, S.G., Arva, N.C., Bargonetti, J., Bartel, F., Taubert, H., Wuerl, P.,
(2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans.
Cell 119, 591-602 .15550242
[9] Brady, M., Vlatkovic, N., and Boyd, M.T. (2005). Regulation of p53 and MDM2 activity by MTBP.
Mol Cell Biol 25, 545-553 .15632057
[10] Buschmann, T., Fuchs, S.Y., Lee, C.G., Pan, Z.Q., and Ronai, Z. (2000). SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53.
Cell 101, 753-762 .10892746
[11] Buschmann, T., Lerner, D., Lee, C.G., and Ronai, Z. (2001). The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9.
J Biol Chem 276, 40389-40395 .11384992
[12] Busuttil, V., Droin, N., McCormick, L., Bernassola, F., Candi, E., Melino, G., and Green, D.R. (2010). NF-{kappa}B inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2.
Proc Natl Acad Sci USA 107(42):18061-6.20921405
[13] Candeias, M.M., Malbert-Colas, L., Powell, D.J., Daskalogianni, C., Maslon, M.M., Naski, N., Bourougaa, K., Calvo, F., and F?hraeus, R. (2008). P53 mRNA controls p53 activity by managing Mdm2 functions.
Nat Cell Biol 10, 1098-1105 .19160491
[14] Canner, J.A., Sobo, M., Ball, S., Hutzen, B., DeAngelis, S., Willis, W., Studebaker, A.W., Ding, K., Wang, S., Yang, D.,
(2009). MI-63: a novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53.
Br J Cancer 101, 774-781 .19707204
[15] Chang, Y.C., Lee, Y.S., Tejima, T., Tanaka, K., Omura, S., Heintz, N.H., Mitsui, Y., and Magae, J. (1998). mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway.
Cell Growth Differ 9, 79-84 .9438391
[16] Chen, J., Marechal, V., and Levine, A.J. (1993). Mapping of the p53 and mdm-2 interaction domains.
Mol Cell Biol 13, 4107-4114 .7686617
[17] Chen, L., Marechal, V., Moreau, J., Levine, A.J., and Chen, J. (1997). Proteolytic cleavage of the mdm2 oncoprotein during apoptosis.
J Biol Chem 272, 22966-22973 .9278461
[18] Cheng, Q., and Chen, J. (2010). Mechanism of p53 stabilization by ATM after DNA damage.
Cell Cycle 9, 472-478 .20081365
[19] Cheng, Q., Chen, L., Li, Z., Lane, W.S., and Chen, J. (2009). ATM activates p53 by regulating MDM2 oligomerization and E3 processivity.
EMBO J 28, 3857-3867 .19816404
[20] Chi, X.Z., Kim, J., Lee, Y.H., Lee, J.W., Lee, K.S., Wee, H., Kim, W.J., Park, W.Y., Oh, B.C., Stein, G.S.,
(2009). Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination.
Cancer Res 69, 8111-8119 .19808967
[21] de Oca Luna M., R., Wagner, D.S., and Lozano, G. (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53.
Nature 378, 203-206 .7477326
[22] Di Stefano, V., Blandino, G., Sacchi, A., Soddu, S., and D’Orazi, G. (2004). HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function.
Oncogene 23, 5185-5192 .15122315
[23] Dias, S.S., Milne, D.M., and Meek, D.W. (2006). c-Abl phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and regulates interaction with ARF.
Oncogene 25, 6666-6671 .16702947
[24] Ding, K., Lu, Y., Nikolovska-Coleska, Z., Wang, G., Qiu, S., Shangary, S., Gao, W., Qin, D., Stuckey, J., Krajewski, K.,
(2006). Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction.
J Med Chem 49, 3432-3435 .16759082
[25] Dubs-Poterszman, M.C., Tocque, B., and Wasylyk, B. (1995). MDM2 transformation in the absence of p53 and abrogation of the p107 G1 cell-cycle arrest.
Oncogene 11, 2445-2449 .8570197
[26] Efeyan, A., Ortega-Molina, A., Velasco-Miguel, S., Herranz, D., Vassilev, L.T., and Serrano, M. (2007). Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin.
Cancer Res 67, 7350-7357 .17671205
[27] Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H., and Weissman, A.M. (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53.
J Biol Chem 275, 8945-8951 .10722742
[28] Feng, J., Tamaskovic, R., Yang, Z., Brazil, D.P., Merlo, A., Hess, D., and Hemmings, B.A. (2004). Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation.
J Biol Chem 279, 35510-35517 .15169778
[29] Fu, W., Ma, Q., Chen, L., Li, P., Zhang, M., Ramamoorthy, S., Nawaz, Z., Shimojima, T., Wang, H., Yang, Y.,
(2009). MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation.
J Biol Chem 284, 13987-14000 .19321440
[30] Fu, X., Yucer, N., Liu, S., Li, M., Yi, P., Mu, J.J., Yang, T., Chu, J., Jung, S.Y., O’Malley, B.W.,
(2010). RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage.
Proc Natl Acad Sci U S A 107, 4579-4584 .20173098
[31] Fuchs, S.Y., Adler, V., Buschmann, T., Wu, X., and Ronai, Z. (1998). Mdm2 association with p53 targets its ubiquitination.
Oncogene 17, 2543-2547 .9824166
[32] Goldberg, Z., Vogt Sionov, R., Berger, M., Zwang, Y., Perets, R., Van Etten, R.A., Oren, M., Taya, Y., and Haupt, Y. (2002). Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation.
EMBO J 21, 3715-3727 .12110584
[33] Grünbaum, U., Meye, A., Bache, M., Bartel, F., Würl, P., Schmidt, H., Dunst, J., and Taubert, H. (2001). Transfection with mdm2-antisense or wtp53 results in radiosensitization and an increased apoptosis of a soft tissue sarcoma cell line.
Anticancer Res 21, 2065-2071 .11497299
[34] Gu, H., Wang, X., Rao, S., Wang, J., Zhao, J., Ren, F.L., Mu, R., Yang, Y., Qi, Q., Liu, W.,
(2008a). Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells.
Mol Cancer Ther 7, 3298-3305 .18852133
[35] Gu, L., Zhu, N., Findley, H.W., and Zhou, M. (2008b). MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2.
Leukemia 22, 730-739 .18273046
[36] Halaschek-Wiener, J., Wacheck, V., Kloog, Y., and Jansen, B. (2004). Ras inhibition leads to transcriptional activation of p53 and down-regulation of Mdm2: two mechanisms that cooperatively increase p53 function in colon cancer cells.
Cell Signal 16, 1319-1327 .15337531
[37] Hjerpe, R., Aillet, F., Lopitz-Otsoa, F., Lang, V., Torres-Ramos, M., Farrás, R., Hay, R.T., and Rodríguez, M.S. (2010). Oligomerization conditions Mdm2-mediated efficient p53 polyubiquitylation but not its proteasomal degradation.
Int J Biochem Cell Biol 42, 725-735 .20080206
[38] Hogan, C., Hutchison, C., Marcar, L., Milne, D., Saville, M., Goodlad, J., Kernohan, N., and Meek, D. (2008). Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma.
J Biol Chem 283, 18012-18023 .18467333
[39] Hollenhorst, P.C., Shah, A.A., Hopkins, C., and Graves, B.J. (2007). Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family.
Genes Dev 21, 1882-1894 .17652178
[40] Honda, R., and Yasuda, H. (2000). Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase.
Oncogene 19, 1473-1476 .10723139
[41] Inoue, T., Geyer, R.K., Howard, D., Yu, Z.K., and Maki, C.G. (2001). MDM2 can promote the ubiquitination, nuclear export, and degradation of p53 in the absence of direct binding.
J Biol Chem 276, 45255-45260 .11572869
[42] Iwakuma, T., and Lozano, G. (2003). MDM2, an introduction.
Mol Cancer Res 1, 993-1000 .14707282
[43] Izumi, T., Takaori-Kondo, A., Shirakawa, K., Higashitsuji, H., Itoh, K., Io, K., Matsui, M., Iwai, K., Kondoh, H., Sato, T.,
(2009). MDM2 is a novel E3 ligase for HIV-1 Vif.
Retrovirology 6, 1.19128510
[44] Jones, S., Roe, A., Donehower, L., and Bradley, A. (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53
. Nature 378 , 206-208 .7477327
[45] Juven, T., Barak, Y., Zauberman, A., George, D.L., and Oren, M. (1993). Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene.
Oncogene 8, 3411-3416 .8247544
[46] Kastan, M.B., and Bartek, J. (2004). Cell-cycle checkpoints and cancer.
Nature 432, 316-323 .15549093
[47] Khosravi, R., Maya, R., Gottlieb, T., Oren, M., Shiloh, Y., and Shkedy, D. (1999). Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage.
Proc Natl Acad Sci U S A 96, 14973-14977 .10611322
[48] Kim, D., Song, J., and Jin, E.J. (2010). MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2.
J Biol Chem 285, 26900-26907 .20576614
[49] Kojima, K., Konopleva, M., Samudio, I.J., Shikami, M., Cabreira-Hansen, M., McQueen, T., Ruvolo, V., Tsao, T., Zeng, Z., Vassilev, L.T.,
(2005). MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy.
Blood 106, 3150-3159 .16014563
[50] Kondo, S., Barnett, G.H., Hara, H., Morimura, T., and Takeuchi, J. (1995). MDM2 protein confers the resistance of a human glioblastoma cell line to cisplatin-induced apoptosis.
Oncogene 10, 2001-2006 .7761100
[51] Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J., and Pavletich, N.P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.
Science 274, 948-953 .8875929
[52] Lai, K.P., Leong, W.F., Chau, J.F., Jia, D., Zeng, L., Liu, H., He, L., Hao, A., Zhang, H., Meek, D.,
(2010). S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response.
EMBO J 29, 2994-3006 .20657550
[53] Lee, M.H., Lee, S.W., Lee, E.J., Choi, S.J., Chung, S.S., Lee, J.I., Cho, J.M., Seol, J.H., Baek, S.H., Kim, K.I.,
(2006). SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination.
Nat Cell Biol 8, 1424-1431 .17086174
[54] Li, B. (2005). c-Abl in oxidative stress, aging and cancer.
Cell Cycle 4, 246-248 .15655364
[55] Li, M., Brooks, C.L., Kon, N., and Gu, W. (2004). A dynamic role of HAUSP in the p53-Mdm2 pathway.
Mol Cell 13, 879-886 .15053880
[56] Li, M., Brooks, C.L., Wu-Baer, F., Chen, D., Baer, R., and Gu, W. (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2.
Science 302, 1972-1975 .14671306
[57] Lu, X., Ma, O., Nguyen, T.A., Jones, S.N., Oren, M., and Donehower, L.A. (2007). The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop.
Cancer Cell 12, 342-354 .17936559
[58] Lu, X., Nguyen, T.A., Zhang, X., and Donehower, L.A. (2008). The Wip1 phosphatase and Mdm2: cracking the “Wip” on p53 stability.
Cell Cycle 7, 164-168 .18333294
[59] Maguire, M., Nield, P.C., Devling, T., Jenkins, R.E., Park, B.K., Polański, R., Vlatkovi?, N., and Boyd, M.T. (2008). MDM2 regulates dihydrofolate reductase activity through monoubiquitination.
Cancer Res 68, 3232-3242 .18451149
[60] Maki, C.G. (1999). Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2.
J Biol Chem 274, 16531-16535 .10347217
[61] Manfredi, J.J. (2010). The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor.
Genes Dev 24, 1580-1589 .20679392
[62] Maya, R., Balass, M., Kim, S.T., Shkedy, D., Leal, J.F., Shifman, O., Moas, M., Buschmann, T., Ronai, Z., Shiloh, Y.,
(2001). ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage.
Genes Dev 15, 1067-1077 .11331603
[63] Mayo, L.D., and Donner, D.B. (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus.
Proc Natl Acad Sci U S A 98, 11598-11603 .11504915
[64] Meek, D.W., and Hupp, T.R. (2010). The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours?
Semin Cancer Biol 20, 19-28 .19897041
[65] Meng, L.H., Kohlhagen, G., Liao, Z.Y., Antony, S., Sausville, E., and Pommier, Y. (2005). DNA-protein cross-links and replication-dependent histone H2AX phosphorylation induced by aminoflavone (NSC 686288), a novel anticancer agent active against human breast cancer cells.
Cancer Res 65, 5337-5343 .15958581
[66] Meulmeester, E., Pereg, Y., Shiloh, Y., and Jochemsen, A.G. (2005). ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation.
Cell Cycle 4, 1166-1170 .16082221
[67] Milne, D., Kampanis, P., Nicol, S., Dias, S., Campbell, D.G., Fuller-Pace, F., and Meek, D. (2004). A novel site of AKT-mediated phosphorylation in the human MDM2 onco-protein.
FEBS Lett 577, 270-276 .15527798
[68] Mo, P., Wang, H., Lu, H., Boyd, D.D., and Yan, C. (2010). MDM2 mediates ubiquitination and degradation of activating transcription factor 3.
J Biol Chem 285, 26908-26915 .20592017
[69] Moll, U.M., and Petrenko, O. (2003). The MDM2-p53 interaction.
Mol Cancer Res 1, 1001-1008 .14707283
[70] Momand, J., Zambetti, G.P., Olson, D.C., George, D., and Levine, A.J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.
Cell 69, 1237-1245 .1535557
[71] Naski, N., Gajjar, M., Bourougaa, K., Malbert-Colas, L., F?hraeus, R., and Candeias, M.M. (2009). The p53 mRNA-Mdm2 interaction.
Cell Cycle 8, 31-34 .19106616
[72] Ofir-Rosenfeld, Y., Boggs, K., Michael, D., Kastan, M.B., and Oren, M. (2008). Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26.
Mol Cell 32, 180-189 .18951086
[73] Pettersson, S., Kelleher, M., Pion, E., Wallace, M., and Ball, K.L. (2009). Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2.
Biochem J 418, 575-585 .19032150
[74] Phelps, M., Darley, M., Primrose, J.N., and Blaydes, J.P. (2003). p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells.
Cancer Res 63, 2616-2623 .12750288
[75] Pikkarainen, S., Kennedy, R.A., Marshall, A.K., Tham, L., Lay, K., Kriz, T.A., Handa, B.S., Clerk, A., and Sugden, P.H. (2009). Regulation of expression of the rat orthologue of mouse double minute 2 (MDM2) by H(2)O(2)-induced oxidative stress in neonatal rat cardiac myocytes.
J Biol Chem 284, 27195-27210 .19638633
[76] Pochampally, R., Fodera, B., Chen, L., Lu, W., and Chen, J. (1999). Activation of an MDM2-specific caspase by p53 in the absence of apoptosis.
J Biol Chem 274, 15271-15277 .10329737
[77] Poyurovsky, M.V., Katz, C., Laptenko, O., Beckerman, R., Lokshin, M., Ahn, J., Byeon, I.J., Gabizon, R., Mattia, M., Zupnick, A.,
(2010). The C terminus of p53 binds the N-terminal domain of MDM2.
Nat Struct Mol Biol 17, 982-989 .20639885
[78] Poyurovsky, M.V., Priest, C., Kentsis, A., Borden, K.L., Pan, Z.Q., Pavletich, N., and Prives, C. (2007). The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity.
EMBO J 26, 90-101 .17170710
[79] Qi, J.S., Yuan, Y., Desai-Yajnik, V., and Samuels, H.H. (1999). Regulation of the mdm2 oncogene by thyroid hormone receptor.
Mol Cell Biol 19, 864-872 .9858609
[80] Ray, R.M., Bhattacharya, S., and Johnson, L.R. (2010). Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1
. Apoptosis 2010 Sep 2 . [Epub ahead of print] PMID: 20812030
10.1007/s10495-010-0538-0[81] Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., McMahon, M., Oren, M., and McCormick, F. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF.
Cell 103, 321-330 .11057904
[82] Rong, J.J., Hu, R., Qi, Q., Gu, H.Y., Zhao, Q., Wang, J., Mu, R., You, Q.D., and Guo, Q.L. (2009). Gambogic acid down-regulates MDM2 oncogene and induces p21(Waf1/CIP1) expression independent of p53.
Cancer Lett 284, 102-112 .19428175
[83] Samudio, I.J., Duvvuri, S., Clise-Dwyer, K., Watt, J.C., Mak, D., Kantarjian, H., Yang, D., Ruvolo, V., and Borthakur, G. (2010). Activation of p53 signaling by MI-63 induces apoptosis in acute myeloid leukemia cells.
Leuk Lymphoma 51, 911-919 .20423286
[84] Sashida, G., Liu, Y., Elf, S., Miyata, Y., Ohyashiki, K., Izumi, M., Menendez, S., and Nimer, S.D. (2009). ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation.
Mol Cell Biol 29, 3687-3699 .19380490
[85] Sato, N., Mizumoto, K., Maehara, N., Kusumoto, M., Nishio, S., Urashima, T., Ogawa, T., and Tanaka, M. (2000). Enhancement of drug-induced apoptosis by antisense oligodeoxynucleotides targeted against Mdm2 and p21WAF1/CIP1.
Anticancer Res 20, 837-842 .10810363
[86] Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R.S., Qiu, S., Nikolovska-Coleska, Z., Ding, K., Wang, G., Chen, J.,
(2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition.
Proc Natl Acad Sci U S A 105, 3933-3938 .18316739
[87] Sheikh, M.S., Shao, Z.M., Hussain, A., and Fontana, J.A. (1993). The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma.
Cancer Res 53, 3226-3228 .8324731
[88] Shinozaki, T., Nota, A., Taya, Y., and Okamoto, K. (2003). Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export.
Oncogene 22, 8870-8880 .14654783
[89] Slack, A., Chen, Z., Tonelli, R., Pule, M., Hunt, L., Pession, A., and Shohet, J.M. (2005). The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma.
Proc Natl Acad Sci U S A 102, 731-736 .15644444
[90] Song, M.S., Song, S.J., Kim, S.Y., Oh, H.J., and Lim, D.S. (2008). The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex.
EMBO J 27, 1863-1874 .18566590
[91] Stad, R., Little, N.A., Xirodimas, D.P., Frenk, R., van der Eb, A.J., Lane, D.P., Saville, M.K., and Jochemsen, A.G. (2001). Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms.
EMBO Rep 2, 1029-1034 .11606419
[92] Stevenson, L.F., Sparks, A., Allende-Vega, N., Xirodimas, D.P., Lane, D.P., and Saville, M.K. (2007). The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2.
EMBO J 26, 976-986 .17290220
[93] Sun, P., Dong, P., Dai, K., Hannon, G.J., and Beach, D. (1998). p53-independent role of MDM2 in TGF-beta1 resistance.
Science 282, 2270-2272 .9856953
[94] Tang, J., Qu, L.K., Zhang, J., Wang, W., Michaelson, J.S., Degenhardt, Y.Y., El-Deiry, W.S., and Yang, X. (2006). Critical role for Daxx in regulating Mdm2.
Nat Cell Biol 8, 855-862 .16845383
[95] Tortora, G., Caputo, R., Damiano, V., Bianco, R., Chen, J., Agrawal, S., Bianco, A.R., and Ciardiello, F. (2000). A novel MDM2 anti-sense oligonucleotide has anti-tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer.
Int J Cancer 88, 804-809 .11072252
[96] Truong, A.H., Cervi, D., Lee, J., and Ben-David, Y. (2005). Direct transcriptional regulation of MDM2 by Fli-1.
Oncogene 24, 962-969 .15592502
[97] Tyner, S.D., Venkatachalam, S., Choi, J., Jones, S., Ghebranious, N., Igelmann, H., Lu, X., Soron, G., Cooper, B., Brayton, C.,
(2002). p53 mutant mice that display early ageing-associated phenotypes.
Nature 415, 45-53 .11780111
[98] Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C.,
(2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2.
Science 303, 844-848 .14704432
[99] Wang, P., Gao, H., Ni, Y., Wang, B., Wu, Y., Ji, L., Qin, L., Ma, L., and Pei, G. (2003). Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2.
J Biol Chem 278, 6363-6370 .12488444
[100] Waning, D.L., Lehman, J.A., Batuello, C.N., and Mayo, L.D. (2010). Controlling the Mdm2-Mdmx-p53 Circuit.
Pharmaceuticals (Basel) 3, 1576-1593 .20651945
[101] Wood, N.T., Meek, D.W., and Mackintosh, C. (2009). 14-3-3 Binding to Pim-phosphorylated Ser166 and Ser186 of human Mdm2—Potential interplay with the PKB/Akt pathway and p14(ARF).
FEBS Lett 583, 615-620 .19166854
[102] Wu, X., Bayle, J.H., Olson, D., and Levine, A.J. (1993). The p53-mdm-2 autoregulatory feedback loop.
Genes Dev 7, 1126-1132 .8319905
[103] Yan, J., Zhang, D., Di, Y., Shi, H., Rao, H., and Huo, K. (2010). A newly identified Pirh2 substrate SCYL1-BP1 can bind to MDM2 and accelerate MDM2 self-ubiquitination.
FEBS Lett 584, 3275-3278 .20598683
[104] Yang, H.Y., Wen, Y.Y., Lin, Y.I., Pham, L., Su, C.H., Yang, H., Chen, J., and Lee, M.H. (2007). Roles for negative cell regulator 14-3-3sigma in control of MDM2 activities.
Oncogene 26, 7355-7362 .17546054
[105] Zhang, X., Gu, L., Li, J., Shah, N., He, J., Yang, L., Hu, Q., and Zhou, M. (2010). Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells.
[Epub ahead of print] [PMID: 20935220] Cancer Res 2010, 23.20935220
[106] Zhang, X.C., Chen, J., Su, C.H., Yang, H.Y., and Lee, M.H. (2008). Roles for CSN5 in control of p53/MDM2 activities.
J Cell Biochem 103, 1219-1230 .17879958
[107] Zheng, T., Wang, J., Chen, X., Meng, X., Song, X., Lu, Z., Jiang, H., and Liu, L. (2010). Disruption of p73-MDM2 binding synergizes with gemcitabine to induce apoptosis in HuCCT1 cholangiocarcinoma cell line with p53 mutation.
Tumour Biol 31, 287-295 .20422343
[108] Zhou, B.B., and Elledge, S.J. (2000). The DNA damage response: putting checkpoints in perspective.
Nature 408, 433-439 .11100718
[109] Zhou, B.P., and Hung, M.C. (2002). Novel targets of Akt, p21(Cipl/WAF1), and MDM2.
Semin Oncol 29, 62-70 .12138399
[110] Zhou, B.P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M.C. (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation.
Nat Cell Biol 3, 973-982 .11715018