[1] Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline.
Mol Syst Biol 2, 2006.0028.16738572
[2] Atsumi, S., Higashide, W., and Liao, J.C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde.
Nat Biotechnol 27, 1177–1180
10.1038/nbt.158619915552
[3] Beisel, C.L., Bayer, T.S., Hoff, K.G., and Smolke, C.D. (2008). Model-guided design of ligand-regulated RNAi for programmable control of gene expression.
Mol Syst Biol 4, 224–237 .
10.1038/msb.2008.6218956013
[4] Buchler, N.E., and Cross, F.R. (2009). Protein sequestration generates a flexible ultrasensitive response in a genetic network.
Mol Syst Biol 5, 272–278 .
10.1038/msb.2009.3019455136
[5] Cello, J., Paul, A.V., and Wimmer, E. (2002). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template.
Science 297, 1016–1018
10.1126/science.107226612114528
[6] Chan, L.Y., Kosuri, S., and Endy, D. (2005). Refactoring bacteriophage T7.
Mol Syst Biol 1, 2005 0018.
[7] Danino, T., Mondragón-Palomino, O., Tsimring, L., and Hasty, J. (2010). A synchronized quorum of genetic clocks.
Nature 463, 326–330
10.1038/nature0875320090747
[8] Desai, S.K., and Gallivan, J.P. (2004). Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation.
J Am Chem Soc 126, 13247–13254
10.1021/ja048634j15479078
[9] Dhanasekaran, M., Negi, S., and Sugiura, Y. (2006). Designer zinc finger proteins: tools for creating artificial DNA-binding functional proteins.
Acc Chem Res 39, 45–52
10.1021/ar050158u16411739
[10] Dickins, R.A., Hemann, M.T., Zilfou, J.T., Simpson, D.R., Ibarra, I., Hannon, G.J., and Lowe, S.W. (2005). Probing tumor phenotypes using stable and regulated synthetic microRNA precursors.
Nat Genet 37, 1289–1295 .16200064
[11] Dixon, N., Duncan, J.N., Geerlings, T., Dunstan, M.S., McCarthy, J.E., Leys, D., and Micklefield, J. (2010). Reengineering orthogonally selective riboswitches.
Proc Natl Acad Sci USA 107, 2830–2835
10.1073/pnas.091120910720133756
[12] Elowitz, M.B., and Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators.
Nature 403, 335–338
10.1038/3500212510659856
[13] Friedland, A.E., Lu, T.K., Wang, X., Shi, D., Church, G., and Collins, J.J. (2009). Synthetic gene networks that count.
Science 324, 1199–1202
10.1126/science.117200519478183
[14] Fung, E., Wong, W.W., Suen, J.K., Bulter, T., Lee, S.G., and Liao, J.C. (2005). A synthetic gene-metabolic oscillator.
Nature 435, 118–122
10.1038/nature0350815875027
[15] Gardner, T.S., Cantor, C.R., and Collins, J.J. (2000). Construction of a genetic toggle switch in Escherichia coli.
Nature 403, 339–342
10.1038/3500213110659857
[16] Georgiou, G. (2002). How to flip the (redox) switch.
Cell 111, 607–610
10.1016/S0092-8674(02)01165-012464172
[17] Gertz, J., and Cohen, B.A. (2009). Environment-specific combinatorial cis-regulation in synthetic promoters.
Mol Syst Biol 5, 244–252 .
10.1038/msb.2009.119225457
[18] Gertz, J., Siggia, E.D., and Cohen, B.A. (2009). Analysis of combinatorial cis-regulation in synthetic and genomic promoters.
Nature 457, 215–218
10.1038/nature0752119029883
[19] Ghim, C.M., and Almaas, E. (2009). Two-component genetic switch as a synthetic module with tunable stability.
Phys Rev Lett 103, 028101
10.1103/PhysRevLett.103.02810119659247
[20] Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A.,
(2008). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome.
Science 319, 1215–1220
10.1126/science.115172118218864
[21] Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M.,
(2010). Creation of a bacterial cell controlled by a chemically synthesized genome.
Science 329, 52–56
10.1126/science.119071920488990
[22] Hooshangi, S., Thiberge, S., and Weiss, R. (2005). Ultrasensitivity and noise propagation in a synthetic transcriptional cascade.
Proc Natl Acad Sci U S A 102, 3581–3586
10.1073/pnas.040850710215738412
[23] Huang, J., Koide, A., Makabe, K., and Koide, S. (2008). Design of protein function leaps by directed domain interface evolution.
Proc Natl Acad Sci U S A 105, 6578–6583
10.1073/pnas.080109710518445649
[24] Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J., and Fussenegger, M. (2010). Self-sufficient control of urate homeostasis in mice by a synthetic circuit.
Nat Biotechnol 28, 355–360
10.1038/nbt.161720351688
[25] Kim, D.H., Behlke, M.A., Rose, S.D., Chang, M.S., Choi, S., and Rossi, J.J. (2005). Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy.
Nat Biotechnol 23, 222–226
10.1038/nbt105115619617
[26] Kim, J., White, K.S., and Winfree, E. (2006). Construction of an
in vitro bistable circuit from synthetic transcriptional switches.
Mol Syst Biol 2, 68–79 .
10.1038/msb410009917170763
[27] Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T.S., Cantor, C.R., and Collins, J.J. (2004). Programmable cells: interfacing natural and engineered gene networks.
Proc Natl Acad Sci U S A 101, 8414–8419
10.1073/pnas.040294010115159530
[28] Levskaya, A., Weiner, O.D., Lim, W.A., and Voigt, C.A. (2009). Spatiotemporal control of cell signalling using a light-switchable protein interaction.
Nature 461, 997–1001
10.1038/nature0844619749742
[29] Lou, C., Liu, X., Ni, M., Huang, Y., Huang, Q., Huang, L., Jiang, L., Lu, D., Wang, M., Liu, C.,
(2010). Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.
Mol Syst Biol 6, 350–360 .
10.1038/msb.2010.220212522
[30] Lundblad, E.W., Xiao, G., Ko, J.H., and Altman, S. (2008). Rapid selection of accessible and cleavable sites in RNA by Escherichia coli RNase P and random external guide sequences.
Proc Natl Acad Sci U S A 105, 2354–2357
10.1073/pnas.071197710518263737
[31] Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D., and Keasling, J.D. (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.
Nat Biotechnol 21, 796–802
10.1038/nbt83312778056
[32] Mogno, I., Vallania, F., Mitra, R.D., and Cohen, B.A. (2010). TATA is a modular component of synthetic promoters.
Genome Res 20, 1391–1397
10.1101/gr.106732.11020627890
[33] Mulhbacher, J., St-Pierre, P., and Lafontaine, D.A. (2010). Therapeutic applications of ribozymes and riboswitches.
Curr Opin Pharmacol 10, 551–556
10.1016/j.coph.2010.07.00220685165
[34] Murphy, K.F., Adams, R.M., Wang, X., Balázsi, G., and Collins, J.J. (2010). Tuning and controlling gene expression noise in synthetic gene networks.
Nucleic Acids Res 38, 2712–2726
10.1093/nar/gkq09120211838
[35] Negi, S., Imanishi, M., Matsumoto, M., and Sugiura, Y. (2008). New redesigned zinc-finger proteins: design strategy and its application.
Chemistry 14, 3236–3249
10.1002/chem.20070132018236477
[36] Nomura, W., and Sugiura, Y. (2007). Design and synthesis of artificial zinc finger proteins.
Methods Mol Biol 352, 83–93 .17041260
[37] Park, S.H., Zarrinpar, A., and Lim, W.A. (2003). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms.
Science 299, 1061–1064
10.1126/science.107697912511654
[38] Paulsen, C.E., and Carroll, K.S. (2009). Chemical dissection of an essential redox switch in yeast.
Chem Biol 16, 217–225
10.1016/j.chembiol.2009.01.00319230722
[39] Peisajovich, S.G., Garbarino, J.E., Wei, P., and Lim, W.A. (2010). Rapid diversification of cell signaling phenotypes by modular domain recombination.
Science 328, 368–372
10.1126/science.118237620395511
[40] Pomposiello, P.J., and Demple, B. (2001). Redox-operated genetic switches: the SoxR and OxyR transcription factors.
Trends Biotechnol 19, 109–114
10.1016/S0167-7799(00)01542-011179804
[41] Pósfai, G., Plunkett, G. 3rd, Fehér, T., Frisch, D., Keil, G.M., Umenhoffer, K., Kolisnychenko, V., Stahl, B., Sharma, S.S., de Arruda, M.,
(2006). Emergent properties of reduced-genome Escherichia coli.
Science 312, 1044–1046
10.1126/science.112643916645050
[42] Radhika, V., Proikas-Cezanne, T., Jayaraman, M., Onesime, D., Ha, J.H., and Dhanasekaran, D.N. (2007). Chemical sensing of DNT by engineered olfactory yeast strain.
Nat Chem Biol 3, 325–330
10.1038/nchembio88217486045
[43] Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J.,
(2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast.
Nature 440, 940–943
10.1038/nature0464016612385
[44] Saito, H., Kobayashi, T., Hara, T., Fujita, Y., Hayashi, K., Furushima, R., and Inoue, T. (2010). Synthetic translational regulation by an L7Ae-kink-turn RNP switch.
Nat Chem Biol 6, 71–78
10.1038/nchembio.27320016495
[45] Sera, T. (2010). Generation of cell-permeable artificial zinc finger protein variants.
Methods Mol Biol 649, 91–96
10.1007/978-1-60761-753-2_520680829
[46] Shen, N., Ko, J.H., Xiao, G., Wesolowski, D., Shan, G., Geller, B., Izadjoo, M., and Altman, S. (2009). Inactivation of expression of several genes in a variety of bacterial species by EGS technology.
Proc Natl Acad Sci U S A 106, 8163–8168
10.1073/pnas.090349110619416872
[47] Silverman, J., Liu, Q., Lu, Q., Bakker, A., To, W., Duguay, A., Alba, B.M., Smith, R., Rivas, A., Li, P.,
(2005). Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains.
Nat Biotechnol 23, 1556–1561
10.1038/nbt116616299519
[48] Siolas, D., Lerner, C., Burchard, J., Ge, W., Linsley, P.S., Paddison, P.J., Hannon, G.J., and Cleary, M.A. (2005). Synthetic shRNAs as potent RNAi triggers.
Nat Biotechnol 23, 227–231
10.1038/nbt105215619616
[49] Smith, H.O., Hutchison, C.A. 3rd, Pfannkoch, C., and Venter, J.C. (2003). Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides.
Proc Natl Acad Sci U S A 100, 15440–15445
10.1073/pnas.223712610014657399
[50] Sprengel, R., and Hasan, M.T. (2007). Tetracycline-controlled genetic switches.
Handb Exp Pharmacol , 49–72 .
[51] Steen, E.J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S.B., and Keasling, J.D. (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.
Nature 463, 559–562
10.1038/nature0872120111002
[52] Stricker, J., Cookson, S., Bennett, M.R., Mather, W.H., Tsimring, L.S., and Hasty, J. (2008). A fast, robust and tunable synthetic gene oscillator.
Nature 456, 516–519
10.1038/nature0738918971928
[53] Suess, B., Fink, B., Berens, C., Stentz, R., and Hillen, W. (2004). A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo.
Nucleic Acids Res 32, 1610–1614
10.1093/nar/gkh32115004248
[54] Suryawanshi, H., Scaria, V., and Maiti, S. (2010). Modulation of microRNA function by synthetic ribozymes.
Mol Biosyst 6, 1807–1809
10.1039/c0mb00010h20697623
[55] Tietze, L.F., Düfert, A., Lotz, F., S?lter, L., Oum, K., Lenzer, T., Beck, T., and Herbst-Irmer, R. (2009). Synthesis of chiroptical molecular switches by pd-catalyzed domino reactions.
J Am Chem Soc 131, 17879–17884
10.1021/ja906260x19911798
[56] Tigges, M., Marquez-Lago, T.T., Stelling, J., and Fussenegger, M. (2009). A tunable synthetic mammalian oscillator.
Nature 457, 309–312
10.1038/nature0761619148099
[57] Winkler, W.C. (2005). Riboswitches and the role of noncoding RNAs in bacterial metabolic control.
Curr Opin Chem Biol 9, 594–602
10.1016/j.cbpa.2005.09.01616226486
[58] Yen, L., Svendsen, J., Lee, J.S., Gray, J.T., Magnier, M., Baba, T., D’Amato, R.J., and Mulligan, R.C. (2004). Exogenous control of mammalian gene expression through modulation of RNA self-cleavage.
Nature 431, 471–476
10.1038/nature0284415386015
[59] Zhang, K., Sawaya, M.R., Eisenberg, D.S., and Liao, J.C. (2008). Expanding metabolism for biosynthesis of nonnatural alcohols.
Proc Natl Acad Sci U S A 105, 20653–20658
10.1073/pnas.080715710619064911
[60] Zhang, X., Schaffitzel, C., Ban, N., and Shan, S.O. (2009). Multiple conformational switches in a GTPase complex control co-translational protein targeting.
Proc Natl Acad Sci U S A 106, 1754–1759
10.1073/pnas.080857310619174514