Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis

Chandrakala Basavannacharya, Paul R. Moody, Tulika Munshi, Nora Cronin, Nicholas H. Keep, Sanjib Bhakta()

PDF(598 KB)
PDF(598 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (11) : 1011-1022. DOI: 10.1007/s13238-010-0132-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis

  • Chandrakala Basavannacharya, Paul R. Moody, Tulika Munshi, Nora Cronin, Nicholas H. Keep, Sanjib Bhakta()
Author information +
History +

Abstract

The emergence of total drug-resistant tuberculosis (TDR-TB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new antimycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan in Mycobacterium tuberculosis coupled to the hydrolysis of ATP. Mutants of M. tuberculosis MurE were generated by replacing K157, E220, D392, R451 with alanine and N449 with aspartate, and truncating the first 24 amino acid residues at the N-terminus of the enzyme. Analysis of the specific activity of these proteins suggested that apart from the 24 N-terminal residues, the other mutated residues are essential for catalysis. Variations in Km values for one or more substrates were observed for all mutants, except the N-terminal truncation mutant, indicating that these residues are involved in binding substrates and form part of the active site structure. These mutant proteins were also tested for their specificity for a wide range of substrates. Interestingly, the mutations K157A, E220A and D392A showed hydrolysis of ATP uncoupled from catalysis. The ATP hydrolysis rate was enhanced by at least partial occupation of the uridine nucleotide dipeptide binding site. This study provides an insight into the residues essential for the catalytic activity and substrate binding of the ATP-dependent MurE ligase. Since ATP-dependent MurE ligase is a novel drug target, the understanding of its function may lead to development of novel inhibitors against resistant forms of M. tuberculosis.

Keywords

peptidoglycan / MurE ligase / site-directed mutagenesis / m-DAP

Cite this article

Download citation ▾
Chandrakala Basavannacharya, Paul R. Moody, Tulika Munshi, Nora Cronin, Nicholas H. Keep, Sanjib Bhakta. Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Prot Cell, 2010, 1(11): 1011‒1022 https://doi.org/10.1007/s13238-010-0132-9

References

[1] Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., and Blanot, D. (2008). Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32, 168-207 .1826685310.1111/j.1574-6976.2008.00104.x
[2] Basavannacharya, C., Robertson, G., Munshi, T., Keep, N.H., and Bhakta, S. (2010). ATP-dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis (Edinb) 90, 16-24 10.1016/j.tube.2009.10.00719945347
[3] Bertrand, J.A., Auger, G., Fanchon, E., Martin, L., Blanot, D., van Heijenoort, J., and Dideberg, O. (1997). Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. EMBO J 16, 3416-3425 10.1093/emboj/16.12.34169218784
[4] Bertrand, J.A., Auger, G., Martin, L., Fanchon, E., Blanot, D., Le Beller, D., van Heijenoort, J., and Dideberg, O. (1999). Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J Mol Biol 289, 579-590 10.1006/jmbi.1999.280010356330
[5] Bognar, A.L., Osborne, C., and Shane, B. (1987). Primary structure of the Escherichia coli folC gene and its folylpolyglutamate synthetase-dihydrofolate synthetase product and regulation of expression by an upstream gene. J Biol Chem 262, 12337-12343 .3040739
[6] Boniface, A., Bouhss, A., Mengin-Lecreulx, D., and Blanot, D. (2006). The MurE synthetase from Thermotoga maritima is endowed with an unusual D-lysine adding activity. J Biol Chem 281, 15680-15686 10.1074/jbc.M50631120016595662
[7] Bouhss, A., Dementin, S., Parquet, C., Mengin-Lecreulx, D., Bertrand, J.A., Le Beller, D., Dideberg, O., van Heijenoort, J., and Blanot, D. (1999). Role of the ortholog and paralog amino acid invariants in the active site of the UDP-MurNAc-L-alanine:D-glutamate ligase (MurD). Biochemistry 38, 12240-12247 10.1021/bi990517r10493791
[8] Bouhss, A., Mengin-Lecreulx, D., Blanot, D., van Heijenoort, J., and Parquet, C. (1997). Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochemistry 36, 11556-11563 10.1021/bi970797f9305945
[9] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254 10.1016/0003-2697(76)90527-3942051
[10] Consaul, S.A., Wright, L.F., Mahapatra, S., Crick, D.C., and Pavelka, M.S. Jr. (2005). An unusual mutation results in the replacement of diaminopimelate with lanthionine in the peptidoglycan of a mutant strain of Mycobacterium smegmatis. J Bacteriol 187, 1612-1620 10.1128/JB.187.5.1612-1620.200515716431
[11] Dementin, S., Bouhss, A., Auger, G., Parquet, C., Mengin-Lecreulx, D., Dideberg, O., van Heijenoort, J., and Blanot, D. (2001). Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experiments. Eur J Biochem 268, 5800-5807 10.1046/j.0014-2956.2001.02524.x11722566
[12] Eveland, S.S., Pompliano, D.L., and Anderson, M.S. (1997). Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-gamma-glutamate ligases: identification of a ligase superfamily. Biochemistry 36, 6223-6229 10.1021/bi97010789166795
[13] Glaser, P., Munier, H., Gilles, A.M., Krin, E., Porumb, T., Barzu, O., Sarfati, R., Pellecuer, C., and Danchin, A. (1991). Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis. EMBO J 10, 1683-1688 .2050107
[14] Glauner, B., H?ltje, J.V., and Schwarz, U. (1988). The composition of the murein of Escherichia coli. J Biol Chem 263, 10088-10095 .3292521
[15] Gordon, E., Flouret, B., Chantalat, L., van Heijenoort, J., Mengin-Lecreulx, D., and Dideberg, O. (2001). Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem 276, 10999-11006 10.1074/jbc.M00983520011124264
[16] Ikeda, M., Wachi, M., Jung, H.K., Ishino, F., and Matsuhashi, M. (1990). Nucleotide sequence involving murG and murC in the mra gene cluster region of Escherichia coli. Nucleic Acids Res 18, 401410.1093/nar/18.13.40142197603
[17] Inoue, M., Hamada, S., Ooshima, T., Kotani, S., and Kato, K. (1979). Chemical composition of Streptococcus mutans cell walls and their susceptibility to Flavobacterium L-11 enzyme. Microbiol Immunol 23, 319-328 .502897
[18] Kawamoto, I., Oka, T., and Nara, T. (1981). Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 146, 527-534 .7217010
[19] Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 10.1038/227680a05432063
[20] Mahapatra, S., Scherman, H., Brennan, P.J., and Crick, D.C. (2005a). N Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J Bacteriol 187, 2341-2347 10.1128/JB.187.7.2341-2347.200515774877
[21] Mengin-Lecreulx, D., Blanot, D., and van Heijenoort, J. (1994). Replacement of diaminopimelic acid by cystathionine or lanthionine in the peptidoglycan of Escherichia coli. J Bacteriol 176, 4321-4327 .8021219
[22] Mitchell, C., and Oliver, D. (1993). Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol Microbiol 10, 483-497 10.1111/j.1365-2958.1993.tb00921.x7968527
[23] Nanninga, N. (1991). Cell division and peptidoglycan assembly in Escherichia coli. Mol Microbiol 5, 791-795 10.1111/j.1365-2958.1991.tb00751.x1649945
[24] Sambrook, J., and Russell, D.W. (2001). Molecular cloning: a laboratory manual, 3rd ed. edn (Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press).
[25] Schleifer, K.H., and Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407-477 .
[26] Story, R.M., and Steitz, T.A. (1992). Structure of the recA protein-ADP complex. Nature 355, 374-376 10.1038/355374a01731253
[27] van der Wolk, J.P., Klose, M., de Wit, J.G., den Blaauwen, T., Freudl, R., and Driessen, A.J. (1995). Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein. J Biol Chem 270, 18975-18982 10.1074/jbc.270.32.189757642557
[28] Vasstrand, E., Jensen, H.B., and Miron, T. (1980). Microbore single-column analysis of amino acids and amino sugars specific to bacterial cell wall peptidoglycans. Anal Biochem 105, 154-158 10.1016/0003-2697(80)90438-87446982
[29] Velayati, A.A., Masjedi, M.R., Farnia, P., Tabarsi, P., Ghanavi, J., Ziazarifi, A.H., and Hoffner, S.E. (2009). Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest 136, 420-425 10.1378/chest.08-242719349380
[30] Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945-951 .6329717
AI Summary AI Mindmap
PDF(598 KB)

Accesses

Citations

Detail

Sections
Recommended

/