The substrates of Plk1, beyond the functions in mitosis

X. Shawn Liu1, Bing Song2, Xiaoqi Liu1,3()

PDF(416 KB)
PDF(416 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (11) : 999-1010. DOI: 10.1007/s13238-010-0131-x
REVIEW
REVIEW

The substrates of Plk1, beyond the functions in mitosis

  • X. Shawn Liu1, Bing Song2, Xiaoqi Liu1,3()
Author information +
History +

Abstract

Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. In this short review, we briefly summarized the well-established functions modulated by Plk1 during mitosis. Beyond mitosis, we focused mainly on the unexpected processes in which Plk1 emerges as a critical player, including microtubule dynamics, DNA replication, chromosome dynamics, p53 regulation, and recovery from the G2 DNA-damage checkpoint. Our discussion is mainly based on the critical substrates targeted by Plk1 during these cellular events and the functional significance associated with each phosphorylation event.

Keywords

Polo-like kinase 1 / phosphorylation / substrates

Cite this article

Download citation ▾
X. Shawn Liu, Bing Song, Xiaoqi Liu. The substrates of Plk1, beyond the functions in mitosis. Prot Cell, 2010, 1(11): 999‒1010 https://doi.org/10.1007/s13238-010-0131-x

References

[1] Aggarwal, B.D., and Calvi, B.R. (2004). Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372–376 .10.1038/nature02694
[2] Alvarez-Fernández, M., Halim, V.A., Krenning, L., Aprelia, M., Mohammed, S., Heck, A.J., and Medema, R.H. (2010). Recovery from a DNA-damage-induced G2 arrest requires Cdk-dependent activation of FoxM1. EMBO Rep 11, 452–458 .10.1038/embor.2010.46
[3] Ando, K., Ozaki, T., Yamamoto, H., Furuya, K., Hosoda, M., Hayashi, S., Fukuzawa, M., and Nakagawara, A. (2004). Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279, 25549–25561 .10.1074/jbc.M314182200
[4] Bartek, J., and Lukas, J. (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19, 238–245 .10.1016/j.ceb.2007.02.009
[5] Baumann, C., K?rner, R., Hofmann, K., and Nigg, E.A. (2007). PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101–114 .
[6] Baumann, P., and Cech, T.R. (2001). Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 . 10.1126/science.1060036
[7] Brunner, D., and Nurse, P. (2000). CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 .
[8] Budde, P.P., Kumagai, A., Dunphy, W.G., and Heald, R. (2001). Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol 153, 149–158 .10.1083/jcb.153.1.149
[9] Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J.P., Sedivy, J.M., Kinzler, K.W., and Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 .10.1126/science.282.5393.1497
[10] Casenghi, M., Meraldi, P., Weinhart, U., Duncan, P.I., K?rner, R., and Nigg, E.A. (2003). Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 5, 113–125 . 10.1016/S1534-5807(03)00193-X
[11] Choi, J.H., Bertram, P.G., Drenan, R., Carvalho, J., Zhou, H.H., and Zheng, X.F. (2002). The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep 3, 988–994 . 10.1093/embo-reports/kvf197
[12] Chu, D., Kakazu, N., Gorrin-Rivas, M.J., Lu, H.P., Kawata, M., Abe, T., Ueda, K., and Adachi, Y. (2001). Cloning and characterization of LUN, a novel ring finger protein that is highly expressed in lung and specifically binds to a palindromic sequence. J Biol Chem 276, 14004–14013 .
[13] Coquelle, F.M., Caspi, M., Cordelières, F.P., Dompierre, J.P., Dujardin, D.L., Koifman, C., Martin, P., Hoogenraad, C.C., Akhmanova, A., Galjart, N., . (2002). LIS1, CLIP-170’s key to the dynein/dynactin pathway. Mol Cell Biol 22, 3089–3102 . 10.1128/MCB.22.9.3089-3102.2002
[14] Dhar, S.K., Delmolino, L., and Dutta, A. (2001). Architecture of the human origin recognition complex. J Biol Chem 276, 29067–29071 .10.1074/jbc.M103078200
[15] Doyon, Y., Cayrou, C., Ullah, M., Landry, A.J., C?té, V., Selleck, W., Lane, W.S., Tan, S., Yang, X.J., and C?té, J. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21, 51–64 .10.1016/j.molcel.2005.12.007
[16] Eckerdt, F., Yuan, J., and Strebhardt, K. (2005). Polo-like kinases and oncogenesis. Oncogene 24, 267–276 .10.1038/sj.onc.1208273
[17] Elia, A.E., Cantley, L.C., and Yaffe, M.B. (2003). Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 .10.1126/science.1079079
[18] Elowe, S., Hümmer, S., Uldschmid, A., Li, X., and Nigg, E.A. (2007). Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21, 2205–2219 .10.1101/gad.436007
[19] Fu, Z., Malureanu, L., Huang, J., Wang, W., Li, H., van Deursen, J.M., Tindall, D.J., and Chen, J. (2008). Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 10, 1076–1082 .10.1038/ncb1767
[20] Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi, K. (2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 .
[21] Griffith, J.D., Comeau, L., Rosenfield, S., Stansel, R.M., Bianchi, A., Moss, H., and de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 .
[22] Guan, B., Pungaliya, P., Li, X., Uquillas, C., Mutton, L.N., Rubin, E.H., and Bieberich, C.J. (2008). Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1. J Biol Chem 283, 4834–4840 .10.1074/jbc.M708630200
[23] Haluska, P. Jr, Saleem, A., Rasheed, Z., Ahmed, F., Su, E.W., Liu, L.F., and Rubin, E.H. (1999). Interaction between human topoisomerase I and a novel RING finger/arginine-serine protein. Nucleic Acids Res 27, 2538–2544 .10.1093/nar/27.12.2538
[24] Hammer, E., Heilbronn, R., and Weger, S. (2007). The E3 ligase Topors induces the accumulation of polysumoylated forms of DNA topoisomerase I in vitro and in vivo. FEBS Lett 581, 5418–5424 .
[25] Iizuka, M., Matsui, T., Takisawa, H., and Smith, M.M. (2006). Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26, 1098–1108 .10.1128/MCB.26.3.1098-1108.2006
[26] Iizuka, M., Sarmento, O.F., Sekiya, T., Scrable, H., Allis, C.D., and Smith, M.M. (2007). Hbo1 Links p53-Dependent Stress Signaling to DNA Replication Licensing. Mol Cell Biol .
[27] Iizuka, M., and Stillman, B. (1999). Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274, 23027–23034 .10.1074/jbc.274.33.23027
[28] Iwano, T., Tachibana, M., Reth, M., and Shinkai, Y. (2004). Importance of TRF1 for functional telomere structure. J Biol Chem 279, 1442–1448 .10.1074/jbc.M309138200
[29] Kang, Y.H., Park, J.E., Yu, L.R., Soung, N.K., Yun, S.M., Bang, J.K., Seong, Y.S., Yu, H., Garfield, S., Veenstra, T.D., . (2006). Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol Cell 24, 409–422 .10.1016/j.molcel.2006.10.016
[30] Kim, S.H., Kaminker, P., and Campisi, J. (1999). TIN2, a new regulator of telomere length in human cells. Nat Genet 23, 405–412 .10.1038/13854
[31] Kishi, S., Zhou, X.Z., Ziv, Y., Khoo, C., Hill, D.E., Shiloh, Y., and Lu, K.P. (2001). Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks. J Biol Chem 276, 29282–29291 .10.1074/jbc.M011534200
[32] Knecht, R., Elez, R., Oechler, M., Solbach, C., von Ilberg, C., and Strebhardt, K. (1999). Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res 59, 2794–2797 .
[33] Knecht, R., Oberhauser, C., and Strebhardt, K. (2000). PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer 89, 535–536 .10.1002/1097-0215(20001120)89:6<535::AID-IJC12>3.0.CO;2-E
[34] Komarova, Y.A., Akhmanova, A.S., Kojima, S., Galjart, N., and Borisy, G.G. (2002). Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol 159, 589–599 .10.1083/jcb.200208058
[35] Kurasawa, Y., and Yu-Lee, L.Y. (2010). PICH and cotargeted Plk1 coordinately maintain prometaphase chromosome arm architecture. Mol Biol Cell 21, 1188–1199 .10.1091/mbc.E09-11-0950
[36] Lam, M.H., and Rosen, J.M. (2004). Chk1 versus Cdc25: chking one’s levels of cellular proliferation. Cell Cycle 3, 1355–1357 .
[37] Lansbergen, G., Komarova, Y., Modesti, M., Wyman, C., Hoogenraad, C.C., Goodson, H.V., Lemaitre, R.P., Drechsel, D.N., van Munster, E., Gadella, T.W. Jr, . (2004). Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J Cell Biol 166, 1003–1014 . 10.1083/jcb.200402082
[38] Li, H., Liu, X.S., Yang, X., Song, B., Wang, Y., and Liu, X. (2010b). Polo-like kinase 1 phosphorylation of p150Glued facilitates nuclear envelope breakdown during prophase. Proc Natl Acad Sci U S A 107, 14633–14638 .10.1073/pnas.1006615107
[39] Li, H., Liu, X.S., Yang, X., Wang, Y., Wang, Y., Turner, J.R., and Liu, X. (2010a). Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments. EMBO J 29, 2953–2965 .10.1038/emboj.2010.174
[40] Li, H., Wang, Y., and Liu, X. (2008). Plk1-dependent phosphorylation regulates functions of DNA topoisomerase IIalpha in cell cycle progression. J Biol Chem 283, 6209–6221 .10.1074/jbc.M709007200
[41] Liang, C., Weinreich, M., and Stillman, B. (1995). ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81, 667–676 .
[42] Lin, L., Ozaki, T., Takada, Y., Kageyama, H., Nakamura, Y., Hata, A., Zhang, J.H., Simonds, W.F., Nakagawara, A., and Koseki, H. (2005). topors, a p53 and topoisomerase I-binding RING finger protein, is a coactivator of p53 in growth suppression induced by DNA damage. Oncogene 24, 3385–3396 .10.1038/sj.onc.1208554
[43] Lingner, J., and Cech, T.R. (1996). Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci U S A 93, 10712–10717 .10.1073/pnas.93.20.10712
[44] Liu, X., and Erikson, R.L. (2003). Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci U S A 100, 5789–5794 .10.1073/pnas.1031523100
[45] Liu, X., Lin, C.Y., Lei, M., Yan, S., Zhou, T., and Erikson, R.L. (2005). CCT chaperonin complex is required for the biogenesis of functional Plk1. Mol Cell Biol 25, 4993–5010 .10.1128/MCB.25.12.4993-5010.2005
[46] Liu, X.S., Li, H., Song, B., and Liu, X. (2010). Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep 11, 626–632 .10.1038/embor.2010.90
[47] Llamazares, S., Moreira, A., Tavares, A., Girdham, C., Spruce, B.A., Gonzalez, C., Karess, R.E., Glover, D.M., and Sunkel, C.E. (1991). polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev 5, 2153–2165 .10.1101/gad.5.12a.2153
[48] Loayza, D., and De Lange, T. (2003). POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 .10.1038/nature01688
[49] Loayza, D., Parsons, H., Donigian, J., Hoke, K., and de Lange, T. (2004). DNA binding features of human POT1: a nonamer 5′-TAGGGTTAG-3′ minimal binding site, sequence specificity, and internal binding to multimeric sites. J Biol Chem 279, 13241–13248 .10.1074/jbc.M312309200
[50] Lowery, D.M., Clauser, K.R., Hjerrild, M., Lim, D., Alexander, J., Kishi, K., Ong, S.E., Gammeltoft, S., Carr, S.A., and Yaffe, M.B. (2007). Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26, 2262–2273 .10.1038/sj.emboj.7601683
[51] Mac?rek, L., Lindqvist, A., Lim, D., Lampson, M.A., Klompmaker, R., Freire, R., Clouin, C., Taylor, S.S., Yaffe, M.B., and Medema, R.H. (2008). Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119–123 .10.1038/nature07185
[52] Mamely, I., van Vugt, M.A., Smits, V.A., Semple, J.I., Lemmens, B., Perrakis, A., Medema, R.H., and Freire, R. (2006). Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16, 1950–1955 .10.1016/j.cub.2006.08.026
[53] Miotto, B., and Struhl, K. (2008). HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22, 2633–2638 .10.1101/gad.1674108
[54] Miotto, B., and Struhl, K. (2010). HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37, 57–66 .10.1016/j.molcel.2009.12.012
[55] Mitchison, T., and Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature 312, 237–242 .10.1038/312237a0
[56] Monte, M., Benetti, R., Buscemi, G., Sandy, P., Del Sal, G., and Schneider, C. (2003). The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function. J Biol Chem 278, 30356–30364 .10.1074/jbc.M302902200
[57] Monte, M., Benetti, R., Collavin, L., Marchionni, L., Del Sal, G., and Schneider, C. (2004). hGTSE-1 expression stimulates cytoplasmic localization of p53. J Biol Chem 279, 11744–11752 .10.1074/jbc.M311123200
[58] Nakamura, M., Zhou, X.Z., Kishi, S., Kosugi, I., Tsutsui, Y., and Lu, K.P. (2001). A specific interaction between the telomeric protein Pin2/TRF1 and the mitotic spindle. Curr Biol 11, 1512–1516 .10.1016/S0960-9822(01)00456-0
[59] Nakamura, M., Zhou, X.Z., Kishi, S., and Lu, K.P. (2002). Involvement of the telomeric protein Pin2/TRF1 in the regulation of the mitotic spindle. FEBS Lett 514, 193–198 .10.1016/S0014-5793(02)02363-3
[60] Pacek, M., Tutter, A.V., Kubota, Y., Takisawa, H., and Walter, J.C. (2006). Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21, 581–587 . 10.1016/j.molcel.2006.01.030
[61] Perez, F., Diamantopoulos, G.S., Stalder, R., and Kreis, T.E. (1999). CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 .
[62] Peschiaroli, A., Dorrello, N.V., Guardavaccaro, D., Venere, M., Halazonetis, T., Sherman, N.E., and Pagano, M. (2006). SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23, 319–329 .10.1016/j.molcel.2006.06.013
[63] Rajendra, R., Malegaonkar, D., Pungaliya, P., Marshall, H., Rasheed, Z., Brownell, J., Liu, L.F., Lutzker, S., Saleem, A., and Rubin, E.H. (2004). Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 279, 36440–36444 .10.1074/jbc.C400300200
[64] Rasheed, Z.A., Saleem, A., Ravee, Y., Pandolfi, P.P., and Rubin, E.H. (2002). The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. Exp Cell Res 277, 152–160 .10.1006/excr.2002.5550
[65] Rickard, J.E., and Kreis, T.E. (1991). Binding of pp170 to microtubules is regulated by phosphorylation. J Biol Chem 266, 17597–17605 .
[66] Saleem, A., Dutta, J., Malegaonkar, D., Rasheed, F., Rasheed, Z., Rajendra, R., Marshall, H., Luo, M., Li, H., and Rubin, E.H. (2004). The topoisomerase I- and p53-binding protein topors is differentially expressed in normal and malignant human tissues and may function as a tumor suppressor. Oncogene 23, 5293–5300 .10.1038/sj.onc.1207700
[67] Sanchez, Y., Wong, C., Thoma, R.S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S.J. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 .10.1126/science.277.5331.1497
[68] Santamaria, A., Wang, B., Elowe, S., Malik, R., Zhang, F., Bauer, M., Schmidt, A., Sillje, H.H., Koerner, R., and Nigg, E.A. (2010). The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics . In press.10.1074/mcp.M110.004457
[69] Smith, M.R., Wilson, M.L., Hamanaka, R., Chase, D., Kung, H., Longo, D.L., and Ferris, D.K. (1997). Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234, 397–405 .10.1006/bbrc.1997.6633
[70] Smith, S., and de Lange, T. (2000). Tankyrase promotes telomere elongation in human cells. Curr Biol 10, 1299–1302 .10.1016/S0960-9822(00)00752-1
[71] Smogorzewska, A., and de Lange, T. (2004). Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73, 177–208 .10.1146/annurev.biochem.73.071403.160049
[72] Sp?nkuch, B., Matthess, Y., Knecht, R., Zimmer, B., Kaufmann, M., and Strebhardt, K. (2004). Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 96, 862–872 . 10.1093/jnci/djh146
[73] St-Pierre, J., Douziech, M., Bazile, F., Pascariu, M., Bonneil, E., Sauvé, V., Ratsima, H., and D’Amours, D. (2009). Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol Cell 34, 416–426 .10.1016/j.molcel.2009.04.013
[74] Strebhardt, K. (2010). Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 9, 643–660 .10.1038/nrd3184
[75] Strebhardt, K., Kneisel, L., Linhart, C., Bernd, A., and Kaufmann, R. (2000). Prognostic value of pololike kinase expression in melanomas. JAMA 283, 479–480 .
[76] Stuermer, A., Hoehn, K., Faul, T., Auth, T., Brand, N., Kneissl, M., Pütter, V., and Grummt, F. (2007). Mouse pre-replicative complex proteins colocalise and interact with the centrosome. Eur J Cell Biol 86, 37–50 .10.1016/j.ejcb.2006.09.002
[77] Sunkel, C.E., and Glover, D.M. (1988). polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 89, 25–38 .
[78] Tai, C.Y., Dujardin, D.L., Faulkner, N.E., and Vallee, R.B. (2002). Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 156, 959–968 .10.1083/jcb.200109046
[79] Takai, N., Hamanaka, R., Yoshimatsu, J., and Miyakawa, I. (2005). Polo-like kinases (Plks) and cancer. Oncogene 24, 287–291 .10.1038/sj.onc.1208272
[80] Takeda, D.Y., and Dutta, A. (2005). DNA replication and progression through S phase. Oncogene 24, 2827–2843 .10.1038/sj.onc.1208616
[81] Tanenbaum, M.E., Galjart, N., van Vugt, M.A., and Medema, R.H. (2006). CLIP-170 facilitates the formation of kinetochore-microtubule attachments. EMBO J 25, 45–57 .10.1038/sj.emboj.7600916
[82] Tsou, M.F., Wang, W.J., George, K.A., Uryu, K., Stearns, T., and Jallepalli, P.V. (2009). Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17, 344–354 .10.1016/j.devcel.2009.07.015
[83] Tsvetkov, L., and Stern, D.F. (2005). Interaction of chromatin-associated Plk1 and Mcm7. J Biol Chem 280, 11943–11947 .10.1074/jbc.M413514200
[84] Utrera, R., Collavin, L., Lazarevi?, D., Delia, D., and Schneider, C. (1998). A novel p53-inducible gene coding for a microtubule-localized protein with G2-phase-specific expression. EMBO J 17, 5015–5025 .10.1093/emboj/17.17.5015
[85] van Steensel, B., and de Lange, T. (1997). Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 .10.1038/385740a0
[86] van Vugt, M.A., Brás, A., and Medema, R.H. (2004). Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15, 799–811 .10.1016/j.molcel.2004.07.015
[87] van Vugt, M.A., Gardino, A.K., Linding, R., Ostheimer, G.J., Reinhardt, H.C., Ong, S.E., Tan, C.S., Miao, H., Keezer, S.M., Li, J., . (2010). A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol 8, e1000287.10.1371/journal.pbio.1000287
[88] Vaughan, P.S., Miura, P., Henderson, M., Byrne, B., and Vaughan, K.T. (2002). A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport. J Cell Biol 158, 305–319 .10.1083/jcb.200201029
[89] Weger, S., Hammer, E., and Heilbronn, R. (2005). Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579, 5007–5012 .10.1016/j.febslet.2005.07.088
[90] Wolf, G., Elez, R., Doermer, A., Holtrich, U., Ackermann, H., Stutte, H.J., Altmannsberger, H.M., Rübsamen-Waigmann, H., and Strebhardt, K. (1997). Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene 14, 543–549 .10.1038/sj.onc.1200862
[91] Wu, Y., Xiao, S., and Zhu, X.D. (2007). MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 14, 832–840 .10.1038/nsmb1286
[92] Wu, Z.Q., and Liu, X. (2008). Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing. Proc Natl Acad Sci U S A 105, 1919–1924 .10.1073/pnas.0712063105
[93] Wu, Z.Q., Yang, X., Weber, G., and Liu, X. (2008). Plk1 phosphorylation of TRF1 is essential for its binding to telomeres. J Biol Chem 283, 25503–25513 .10.1074/jbc.M803304200
[94] Xie, S., Wu, H., Wang, Q., Cogswell, J.P., Husain, I., Conn, C., Stambrook, P., Jhanwar-Uniyal, M., and Dai, W. (2001). Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 276, 43305–43312 .10.1074/jbc.M106050200
[95] Yang, X., Li, H., Liu, X.S., Deng, A., and Liu, X. (2009a). Cdc2-mediated phosphorylation of CLIP-170 is essential for its inhibition of centrosome reduplication. J Biol Chem 284, 28775–28782 .10.1074/jbc.M109.017681
[96] Yang, X., Li, H., Zhou, Z., Wang, W.H., Deng, A., Andrisani, O., and Liu, X. (2009b). Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem 284, 18588–18592 .10.1074/jbc.C109.001560
[97] Yarm, F.R. (2002). Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22, 6209–6221 . 10.1128/MCB.22.17.6209-6221.2002
[98] Ye, J.Z., Donigian, J.R., van Overbeek, M., Loayza, D., Luo, Y., Krutchinsky, A.N., Chait, B.T., and de Lange, T. (2004). TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 279, 47264–47271 .10.1074/jbc.M409047200
[99] Yim, H., and Erikson, R.L. (2009). Polo-like kinase 1 depletion induces DNA damage in early S prior to caspase activation. Mol Cell Biol 29, 2609–2621 .10.1128/MCB.01277-08
[100] Zhou, R., Wen, H., and Ao, S.Z. (1999). Identification of a novel gene encoding a p53-associated protein. Gene 235, 93–101 .
AI Summary AI Mindmap
PDF(416 KB)

Accesses

Citations

Detail

Sections
Recommended

/