[1] Angelov, D., Verdel, A., An, W., Bondarenko, V., Hans, F., Doyen, C.M., Studitsky, V.M., Hamiche, A., Roeder, R.G., Bouvet, P.,
. (2004). SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays.
EMBO J 23 , 3815–3824 .
10.1038/sj.emboj.7600400[2] Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.
Nature 410, 120–124 .
10.1038/35065138[3] Bussiek, M., Tóth, K., Schwarz, N., and Langowski, J. (2006). Trinucleosome compaction studied by fluorescence energy transfer and scanning force microscopy.
Biochemistry 45, 10838–10846 .
10.1021/bi060807p[4] Catez, F., Ueda, T., and Bustin, M. (2006). Determinants of histone H1 mobility and chromatin binding in living cells.
Nat Struct Mol Biol 13, 305–310 .
10.1038/nsmb1077[5] Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R.R., and Richmond, T.J. (2004). Nucleosome arrays reveal the two-start organization of the chromatin fiber.
Science 306, 1571–1573 .
10.1126/science.1103124[6] Eltsov, M., Maclellan, K.M., Maeshima, K., Frangakis, A.S., and Dubochet, J. (2008). Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.
Proc Natl Acad Sci U S A 105, 19732–19737 .
10.1073/pnas.0810057105[7] Fan, J.Y., Rangasamy, D., Luger, K., and Tremethick, D.J. (2004). H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding.
Mol Cell 16, 655–66 .
10.1016/j.molcel.2004.10.023[8] Francis, N.J., Kingston, R.E., and Woodcock, C.L. (2004). Chromatin compaction by a polycomb group protein complex.
Science 306, 1574–1577 .
10.1126/science.1100576[9] Gansen, A., Valeri, A., Hauger, F., Felekyan, S., Kalinin, S., Tóth, K., Langowski, J., and Seidel, C.A. (2009). Nucleosome disassembly intermediates characterized by single-molecule FRET.
Proc Natl Acad Sci U S A 106, 15308–15313 .
10.1073/pnas.0903005106[10] Hendzel, M.J., Lever, M.A., Crawford, E., and Th’ng, J.P. (2004). The C-terminal domain is the primary determinant of histone H1 binding to chromatin
in vivo.
J Biol Chem 279, 20028–20034 .
10.1074/jbc.M400070200[11] Koopmans, W.J., Brehm, A., Logie, C., Schmidt, T., and van Noort, J. (2007). Single-pair FRET microscopy reveals mononucleosome dynamics.
J Fluoresc 17, 785–795 .
10.1007/s10895-007-0218-9[12] Li, G., Margueron, R., Hu, G., Stokes, D., Wang, Y.H., and Reinberg, D. (2010). Highly compacted chromatin formed
in vitro reflects the dynamics of transcription activation
in vivo.
Mol Cell 38, 41–53 .
10.1016/j.molcel.2010.01.042[13] Llères, D., James, J., Swift, S., Norman, D.G., and Lamond, A.I. (2009). Quantitative analysis of chromatin compaction in living cells using FLIM-FRET.
J Cell Biol 187, 481–496 .
10.1083/jcb.200907029[14] Luger, K., M?der, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution.
Nature 389, 251–260 .
10.1038/38444[15] Neumann, H., Hancock, S.M., Buning, R., Routh, A., Chapman, L., Somers, J., Owen-Hughes, T., van Noort, J., Rhodes, D., and Chin, J.W. (2009). A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation.
Mol Cell 36, 153–163 .
10.1016/j.molcel.2009.07.027[16] Poirier, M.G., Oh, E., Tims, H.S., and Widom, J. (2009). Dynamics and function of compact nucleosome arrays.
Nat Struct Mol Biol 16, 938–944 .
10.1038/nsmb.1650[17] Robinson, P.J., Fairall, L., Huynh, V.A., and Rhodes, D. (2006). EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure.
Proc Natl Acad Sci U S A 103, 6506–6511 .
10.1073/pnas.0601212103[18] Robinson, P.J., and Rhodes, D. (2006). Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone.
Curr Opin Struct Biol 16, 336–343 .
10.1016/j.sbi.2006.05.007[19] Routh, A., Sandin, S., and Rhodes, D. (2008). Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
Proc Natl Acad Sci U S A 105, 8872–8877 .
10.1073/pnas.0802336105[20] Schalch, T., Duda, S., Sargent, D.F., and Richmond, T.J. (2005). X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
Nature 436, 138–141 .
10.1038/nature03686[21] Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R., and Peterson, C.L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions.
Science 311, 844–847 .
10.1126/science.1124000[22] Strick, R., Strissel, P.L., Gavrilov, K., and Levi-Setti, R. (2001). Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes.
J Cell Biol 155, 899–910 .
10.1083/jcb.200105026[23] Thoma, F., Koller, T., and Klug, A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin.
J Cell Biol 83, 403–427 .
10.1083/jcb.83.2.403[24] Trojer, P., Li, G., Sims, R.J. 3rd, Vaquero, A., Kalakonda, N., Boccuni, P., Lee, D., Erdjument-Bromage, H., Tempst, P., Nimer, S.D.,
. (2007). L3MBTL1, a histone-methylation-dependent chromatin lock.
Cell 129, 915–928 .
[25] Watanabe, S., Resch, M., Lilyestrom, W., Clark, N., Hansen, J.C., Peterson, C., and Luger, K. (2010). Structural characterization of H3K56Q nucleosomes and nucleosomal arrays.
Biochim Biophys Acta 1799, 480–486 .
[26] Widom, J., and Klug, A. (1985). Structure of the 300A chromatin filament: X-ray diffraction from oriented samples.
Cell 43, 207–213 .
[27] Williams, S.P., Athey, B.D., Muglia, L.J., Schappe, R.S., Gough, A.H., and Langmore, J.P. (1986). Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length.
Biophys J 49, 233–248 .
10.1016/S0006-3495(86)83637-2[28] Woodcock, C.L., Frado, L.L., and Rattner, J.B. (1984). The higher-order structure of chromatin: evidence for a helical ribbon arrangement.
J Cell Biol 99, 42–52 .
10.1083/jcb.99.1.42[29] Zlatanova, J., Caiafa, P., and Van Holde, K. (2000). Linker histone binding and displacement: versatile mechanism for transcriptional regulation.
FASEB J 14, 1697–1704 .
10.1096/fj.99-0869rev