[1] Aravin, A., and Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing.
FEBS Lett 579, 5830-5840 .
10.1016/j.febslet.2005.08.009[2] Baek, D., Villén, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. (2008). The impact of microRNAs on protein output.
Nature 455, 64-71 .
10.1038/nature07242[3] Banerjee, S., Wang, Z., Mohammad, M., Sarkar, F.H., and Mohammad, R.M. (2008). Efficacy of selected natural products as therapeutic agents against cancer.
J Nat Prod 71, 492-496 .
10.1021/np0705716[4] Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions.
Cell 136, 215-233 .
[5] Beitzinger, M., Peters, L., Zhu, J.Y., Kremmer, E., and Meister, G. (2007). Identification of human microRNA targets from isolated argonaute protein complexes.
RNA Biol 4, 76-84 .
[6] Boissonneault, V., St-Gelais, N., Plante, I., and Provost, P. (2008). A polymerase chain reaction-based cloning strategy applicable to functional microRNA studies.
Anal Biochem 381, 166-168 .
10.1016/j.ab.2008.06.026[7] Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition.
PLoS Biol 3, e85.
10.1371/journal.pbio.0030085[8] Brodersen, P., and Voinnet, O. (2009). Revisiting the principles of microRNA target recognition and mode of action.
Nat Rev Mol Cell Biol 10, 141-148 .
10.1038/nrm2619[9] Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.
RNA 10, 1957-1966 .
[10] Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps.
Nature 460, 479-486 .
[11] Easow, G., Teleman, A.A., and Cohen, S.M. (2007). Isolation of microRNA targets by miRNP immunopurification.
RNA 13, 1198-1204 .
[12] Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs.
Genes Dev 15, 188-200 .
10.1101/gad.862301[13] Engels, B.M., and Hutvagner, G. (2006). Principles and effects of microRNA-mediated post-transcriptional gene regulation.
Oncogene 25, 6163-6169 .
10.1038/sj.onc.1209909[14] Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D.S. (2003). MicroRNA targets in Drosophila.
Genome Biol 5, R1.
10.1186/gb-2003-5-1-r1[15] Flynt, A.S., and Lai, E.C. (2008). Biological principles of microRNA-mediated regulation: shared themes amid diversity.
Nat Rev Genet 9, 831-842 .
10.1038/nrg2455[16] Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs.
Genome Res 19, 92-105 .
10.1101/gr.082701.108[17] Gaidatzis, D., van Nimwegen, E., Hausser, J., and Zavolan, M. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis.
BMC Bioinformatics 8, 69.
10.1186/1471-2105-8-69[18] Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr, Jungkamp, A.C., Munschauer, M.,
. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.
Cell 141, 129-141 .
[19] Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y., and Ambros, V. (2008). mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts.
Nat Methods 5, 813-819 .
10.1038/nmeth.1247[20] Hassan, M.Q., Gordon, J.A., Lian, J.B., van Wijnen, A.J., Stein, J.L., and Stein, G.S. (2010). Ribonucleoprotein immunoprecipitation (RNP-IP): a direct in vivo analysis of microRNA-targets.
J Cell Biochem 110, 817-822 .
10.1002/jcb.22562[21] Huang, J.C., Babak, T., Corson, T.W., Chua, G., Khan, S., Gallie, B.L., Hughes, T.R., Blencowe, B.J., Frey, B.J., and Morris, Q.D. (2007). Using expression profiling data to identify human microRNA targets.
Nat Methods 4, 1045-1049 .
10.1038/nmeth1130[22] Hutvágner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex.
Science 297, 2056-2060 .
10.1126/science.1073827[23] Hwang, H.W., and Mendell, J.T. (2007). MicroRNAs in cell proliferation, cell death, and tumorigenesis.
Br J Cancer 96, R40-R44 .
[24] Ivanovska, I., and Cleary, M.A. (2008). Combinatorial microRNAs: working together to make a difference.
Cell Cycle 7, 3137-3142 .
[25] John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human MicroRNA targets.
PLoS Biol 2, e363.
10.1371/journal.pbio.0020363[26] Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family.
Cell 120, 635-647 .
[27] Johnston, R.J. Jr, and Hobert, O. (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans.
Nature 426, 845-849 .
10.1038/nature02255[28] Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. (2007). The role of site accessibility in microRNA target recognition.
Nat Genet 39, 1278-1284 .
10.1038/ng2135[29] Kim, S.K., Nam, J.W., Rhee, J.K., Lee, W.J., and Zhang, B.T. (2006). miTarget: microRNA target gene prediction using a support vector machine.
BMC Bioinformatics 7, 411.
10.1186/1471-2105-7-411[30] Kim, V.N. (2004). MicroRNA precursors in motion: exportin-5 mediates their nuclear export.
Trends Cell Biol 14, 156-159 .
10.1016/j.tcb.2004.02.006[31] Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., and Hatzigeorgiou, A. (2004). A combined computational-experimental approach predicts human microRNA targets.
Genes Dev 18, 1165-1178 .
10.1101/gad.1184704[32] Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M.,
. (2005). Combinatorial microRNA target predictions.
Nat Genet 37, 495-500 .
10.1038/ng1536[33] Krüger, J., and Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction easy, fast and flexible.
Nucleic Acids Res 34, W451-454 .
[34] Lee, I., Ajay, S.S., Yook, J.I., Kim, H.S., Hong, S.H., Kim, N.H., Dhanasekaran, S.M., Chinnaiyan, A.M., and Athey, B.D. (2009). New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites.
Genome Res 19, 1175-1183 .
10.1101/gr.089367.108[35] Lee, J.Y., Kim, S., Hwang, W., Jeong, J.M., Chung, J.K., Lee, M.C., and Lee, D.S. (2008). Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation.
J Nucl Med 49, 285-294 .
10.2967/jnumed.107.042507[36] Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.
Cell 75, 843-854 .
[37] Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., R?dmark, O., Kim, S.,
. (2003). The nuclear RNase III Drosha initiates microRNA processing.
Nature 425, 415-419 .
10.1038/nature01957[38] Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II.
EMBO J 23, 4051-4060 .
10.1038/sj.emboj.7600385[39] Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.
Cell 120, 15-20 .
[40] Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets.
Cell 115, 787-798 .
[41] Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes.
Nucleic Acids Res 36, 5391-5404 .
10.1093/nar/gkn522[42] Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors.
Science 303, 95-98 .
10.1126/science.1090599[43] Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer.
Nature 449, 682-688 .
10.1038/nature06174[44] Maragkakis, M., Alexiou, P., Papadopoulos, G.L., Reczko, M., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K., Simossis, V.A.,
. (2009a). Accurate microRNA target prediction correlates with protein repression levels.
BMC Bioinformatics 10, 295.
10.1186/1471-2105-10-295[45] Maragkakis, M., Reczko, M., Simossis, V.A., Alexiou, P., Papadopoulos, G.L., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K.,
. (2009b). DIANA-microT web server: elucidating microRNA functions through target prediction.
Nucleic Acids Res 37, W273-276 .
10.1093/nar/gkp292[46] Min, H., and Yoon, S. (2010). Got target? Computational methods for microRNA target prediction and their extension.
Exp Mol Med 42, 233-244 .
10.3858/emm.2010.42.4.032[47] Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., and Rigoutsos, I. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes.
Cell 126, 1203-1217 .
[48] Nachmani, D., Stern-Ginossar, N., Sarid, R., and Mandelboim, O. (2009). Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells.
Cell Host Microbe 5, 376-385 .
10.1016/j.chom.2009.03.003[49] Nonne, N., Ameyar-Zazoua, M., Souidi, M., and Harel-Bellan, A. (2010). Tandem affinity purification of miRNA target mRNAs (TAP-Tar).
Nucleic Acids Res 38, e20.
10.1093/nar/gkp1100[50] O’Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression.
Nature 435, 839-843 .
10.1038/nature03677[51] ?rom, U.A., and Lund, A.H. (2010). Experimental identification of microRNA targets.
Gene 451, 1-5 .
[52] Pillai, R.S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA?
RNA 11, 1753-1761 .
[53] Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P.,
. (2004). A pancreatic islet-specific microRNA regulates insulin secretion.
Nature 432, 226-230 .
10.1038/nature03076[54] Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes.
RNA 10, 1507-1517 .
[55] Rusinov, V., Baev, V., Minkov, I.N., and Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence.
Nucleic Acids Res 33, W696-700 .
10.1093/nar/gki364[56] Saetrom, O., Sn?ve, O. Jr, and Saetrom, P. (2005). Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms.
RNA 11, 995-1003 .
[57] Sarnow, P., Jopling, C.L., Norman, K.L., Schütz, S., and Wehner, K.A. (2006). MicroRNAs: expression, avoidance and subversion by vertebrate viruses.
Nat Rev Microbiol 4, 651-659 .
10.1038/nrmicro1473[58] Selbach, M., Schwanh?usser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs.
Nature 455, 58-63 .
10.1038/nature07228[59] Sethupathy, P., Megraw, M., and Hatzigeorgiou, A.G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets.
Nat Methods 3, 881-886 .
10.1038/nmeth954[60] Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution.
Cell 123, 1133-1146 .
[61] Sturm, M., Hackenberg, M., Langenberger, D., and Frishman, D. (2010). TargetSpy: a supervised machine learning approach for microRNA target prediction.
BMC Bioinformatics 11, 292.
10.1186/1471-2105-11-292[62] Trujillo, R.D., Yue, S.B., Tang, Y., O’Gorman, W.E., and Chen, C.Z. (2010). The potential functions of primary microRNAs in target recognition and repression.
EMBO J 29, 3272-3285 .
10.1038/emboj.2010.208[63] Tsai, N.P., Lin, Y.L., and Wei, L.N. (2009). MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression.
Biochem J 424, 411-418 .
10.1042/BJ20090915[64] Vinther, J., Hedegaard, M.M., Gardner, P.P., Andersen, J.S., and Arctander, P. (2006). Identification of miRNA targets with stable isotope labeling by amino acids in cell culture.
Nucleic Acids Res 34, e107.
10.1093/nar/gkl590[65] Watanabe, Y., Tomita, M., and Kanai, A. (2007). Computational methods for microRNA target prediction.
Methods Enzymol 427, 65-86 .
10.1016/S0076-6879(07)27004-1[66] Xiao, C., and Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles.
Cell 136, 26-36 .
[67] Zhang, L., Ding, L., Cheung, T.H., Dong, M.Q., Chen, J., Sewell, A.K., Liu, X., Yates, J.R. 3rd, and Han, M. (2007). Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2.
Mol Cell 28, 598-613 .
10.1016/j.molcel.2007.09.014