Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis

Wenqing Chen1,3, Dongjing Qu1, Lipeng Zhai1, Meifeng Tao1, Yemin Wang1, Shuangjun Lin1, Neil P. J. Price2(), Zixin Deng1,3()

PDF(529 KB)
PDF(529 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (12) : 1093-1105. DOI: 10.1007/s13238-010-0127-6
RESEARCH ARTICLE

Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis

  • Wenqing Chen1,3, Dongjing Qu1, Lipeng Zhai1, Meifeng Tao1, Yemin Wang1, Shuangjun Lin1, Neil P. J. Price2(), Zixin Deng1,3()
Author information +
History +

Abstract

Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11′-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA– tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.

Keywords

tunicamycin / biosynthetic gene cluster / high-throughput heterologous expression / bioassay / combinatorial biosynthesis

Cite this article

Download citation ▾
Wenqing Chen, Dongjing Qu, Lipeng Zhai, Meifeng Tao, Yemin Wang, Shuangjun Lin, Neil P. J. Price, Zixin Deng. Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Prot Cell, 2010, 1(12): 1093‒1105 https://doi.org/10.1007/s13238-010-0127-6

References

[1] Bai, L., Li, L., Xu, H., Minagawa, K., Yu, Y., Zhang, Y., Zhou, X., Floss, H.G., Mahmud, T., and Deng, Z. (2006). Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol 13, 387-397 .10.1016/j.chembiol.2006.02.002
[2] Bentley, S.D., Chater, K.F., Cerde?o-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., . (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147 .10.1038/417141a
[3] Chen, W., Huang, T., He, X., Meng, Q., You, D., Bai, L., Li, J., Wu, M., Li, R., Xie, Z., . (2009). Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem 284, 10627-10638 .10.1074/jbc.M807534200
[4] Creuzenet, C., Belanger, M., Wakarchuk, W.W., and Lam, J.S. (2000). Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype O6. J Biol Chem 275, 19060-19067 . 10.1074/jbc.M001171200
[5] Eckardt, K. (1983). Tunicamycins, streptovirudins, and corynetoxins, a special subclass of nucleoside antibiotics. J Nat Prod 46, 544-550 .10.1021/np50028a020
[6] Eckardt, K., Thrum, H., Bradler, G., Tonew, E., and Tonew, M. (1975). Streptovirudins, new antibiotics with antibacterial and antiviral activity. II. Isolation, chemical characterization and biological activity of streptovirudins A1, A2, B1, B2, C1, C2, D1, and D2. J Antibiot (Tokyo) 28, 274-279 .
[7] Gross, J.W., Hegeman, A.D., Vestling, M.M., and Frey, P.A. (2000). Characterization of enzymatic processes by rapid mix-quench mass spectrometry: the case of dTDP-glucose 4,6-dehydratase. Biochemistry 39, 13633-13640 .10.1021/bi001963d
[8] Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541-1546 .10.1073/pnas.0337542100
[9] Ishikawa, J., and Hotta, K. (1999). FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174, 251-253 .10.1111/j.1574-6968.1999.tb13576.x
[10] Jian, X., Pang, X., Yu, Y., Zhou, X., and Deng, Z. (2006). Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie Van Leeuwenhoek 90, 29-39 .10.1007/s10482-006-9058-x
[11] Kapp, U., Macedo, S., Hall, D.R., Leiros, I., McSweeney, S.M., and Mitchell, E. (2008). Structure of Deinococcus radiodurans tunicamycin-resistance protein (TmrD), a phosphotransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 479-486 .10.1107/S1744309108011822
[12] Kaysser, L., Lutsch, L., Siebenberg, S., Wemakor, E., Kammerer, B., and Gust, B. (2009). Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J Biol Chem 284, 14987-14996 .10.1074/jbc.M901258200
[13] Kaysser, L., Siebenberg, S., Kammerer, B., and Gust, B. (2010). Analysis of the liposidomycin gene cluster leads to the identification of new caprazamycin derivatives. Chembiochem 11, 191-196 . 10.1002/cbic.200900637
[14] Keenan, R.W., Hamill, R.L., Occolowitz, J.L., and Elbein, A.D. (1981). Biological activities of isolated tunicamycin and streptovirudin fractions. Biochemistry 20, 2968-2973 . 10.1021/bi00513a039
[15] Kenig, M., and Reading, C. (1979). Holomycin and an antibiotic (MM 19290) related to tunicamycin, metabolites of Streptomyces clavuligerus. J Antibiot (Tokyo) 32, 549-554 .
[16] Kieser, T., Bibb, M.J., Chater, K.F., Butter, M.J., and Hopwood, D.A. (2000). Practical Streptomyces Genetics, 2nd ed., John Innes Foundation, Norwich, United Kingdom .
[17] Kimura, K., and Bugg, T.D. (2003). Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat Prod Rep 20, 252-273 .10.1039/b202149h
[18] Liang, X., Lu, Y., Neubert, T.A., and Resh, M.D. (2002). Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J Biol Chem 277, 33032-33040 .10.1074/jbc.M204607200
[19] Martinez, A., Kolvek, S.J., Yip, C.L., Hopke, J., Brown, K.A., MacNeil, I.A., and Osburne, M.S. (2004). Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70, 2452-2463 .10.1128/AEM.70.4.2452-2463.2004
[20] Medema, M.H., Trefzer, A., Kovalchuk, A., van den Berg, M., Müller, U., Heijne, W., Wu, L., Alam, M.T., Ronning, C.M., Nierman, W.C., . (2010). The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2, 212-224 .10.1093/gbe/evq013
[21] Noda, Y., Takatsuki, A., Yoda, K., and Yamasaki, M. (1995). TmrB protein, which confers resistance to tunicamycin on Bacillus subtilis, binds tunicamycin. Biosci Biotechnol Biochem 59, 321-322 .10.1271/bbb.59.321
[22] Noda, Y., Yoda, K., Takatsuki, A., and Yamasaki, M. (1992). TmrB protein, responsible for tunicamycin resistance of Bacillus subtilis, is a novel ATP-binding membrane protein. J Bacteriol 174, 4302-4307 .
[23] Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., . (2001). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98, 12215-12220 .10.1073/pnas.211433198
[24] Ostash, B., Saghatelian, A., and Walker, S. (2007). A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14, 257-267 . 10.1016/j.chembiol.2007.01.008
[25] Patterson, S.I., and Skene, J.H. (1994). Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension. J Cell Biol 124, 521-536 . 10.1083/jcb.124.4.521
[26] Price, N.P., and Momany, F.A. (2005). Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15, 29R-42R .10.1093/glycob/cwi065
[27] Price, N.P., and Tsvetanova, B. (2007). Biosynthesis of the tunicamycins: a review. J Antibiot (Tokyo) 60, 485-491 . 10.1038/ja.2007.62
[28] Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, NY .
[29] Singh, D., Seo, M.J., Kwon, H.J., Rajkarnikar, A., Kim, K.R., Kim, S.O., and Suh, J.W. (2006). Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704) . Gene 376, 13-23 .
[30] Tsvetanova, B.C., Kiemle, D.J., and Price, N.P. (2002). Biosynthesis of tunicamycin and metabolic origin of the 11-carbon dialdose sugar, tunicamine. J Biol Chem 277, 35289-35296 .10.1074/jbc.M201345200
[31] Tsvetanova, B.C., and Price, N.P. (2001). Liquid chromatography-electrospray mass spectrometry of tunicamycin-type antibiotics. Anal Biochem 289, 147-156 .10.1006/abio.2000.4952
[32] Vogel, P., Petterson, D.S., Berry, P.H., Frahn, J.L., Anderton, N., Cockrum, P.A., Edgar, J.A., Jago, M.V., Lanigan, G.W., Payne, A.L., . (1981). Isolation of a group of glycolipid toxins from seedheads of annual ryegrass Lolium rigidum Gaud.) infected by Corynebacterium rathayi. Aust J Exp Biol Med Sci 59, 455-467 .10.1038/icb.1981.39
[33] Wecksler, S.R., Stoll, S., Tran, H., Magnusson, O.T., Wu, S.P., King, D., Britt, R.D., and Klinman, J.P. (2009). Pyrroloquinoline quinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme. Biochemistry 48, 10151-10161 .10.1021/bi900918b
[34] Winn, M., Goss, R.J., Kimura, K., and Bugg, T.D. (2010). Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep 27, 279-304 .10.1039/b816215h
[35] Xu, L., Appell, M., Kennedy, S., Momany, F.A., and Price, N.P. (2004). Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine:polyprenol-P N-acetylhexosamine-1-P translocases. Biochemistry 43, 13248-13255 .10.1021/bi048327q
[36] Yu, T.W., Bai, L., Clade, D., Hoffmann, D., Toelzer, S., Trinh, K.Q., Xu, J., Moss, S.J., Leistner, E., and Floss, H.G. (2002). The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99, 7968-7973 .10.1073/pnas.092697199
[37] Yu, Y., Bai, L., Minagawa, K., Jian, X., Li, L., Li, J., Chen, S., Cao, E., Mahmud, T., Floss, H.G., . (2005). Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol 71, 5066-5076 .10.1128/AEM.71.9.5066-5076.2005
[38] Zayas, C.L., and Escalante-Semerena, J.C. (2007). Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: evidence that dephosphorylation of adenosylcobalamin-5′-phosphate by the CobC phosphatase is the last step of the pathway. J Bacteriol 189, 2210-2218 .10.1128/JB.01665-06
AI Summary AI Mindmap
PDF(529 KB)

Accesses

Citations

Detail

Sections
Recommended

/