[1] Aplin, A., Jasionowski, T., Tuttle, D.L., Lenk, S.E., and Dunn, W.A. Jr. (1992). Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles.
J Cell Physiol 152, 458–466 .
10.1002/jcp.1041520304[2] Atlashkin, V., Kreykenbohm, V., Eskelinen, E.-L., Wenzel, D., Fayyazi, A., and Fischer von Mollard, G. (2003). Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8.
Mol Cell Biol 23, 5198–5207 .
10.1128/MCB.23.15.5198-5207.2003[3] Axe, E.L., Walker, S.A., Manifava, M., Chandra, P., Roderick, H.L., Habermann, A., Griffiths, G., and Ktistakis, N.T. (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum.
J Cell Biol 182, 685–701 .
10.1083/jcb.200803137[4] Bache, K.G., Raiborg, C., Mehlum, A., Madshus, I.H., and Stenmark, H. (2002). Phosphorylation of Hrs downstream of the epidermal growth factor receptor.
Eur J Biochem 269, 3881–3887 .
10.1046/j.1432-1033.2002.03046.x[5] Block, M.R., Glick, B.S., Wilcox, C.A., Wieland, F.T., and Rothman, J.E. (1988). Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport.
Proc Natl Acad Sci U S A 85, 7852–7856 .
10.1073/pnas.85.21.7852[6] Cai, H., Reinisch, K., and Ferro-Novick, S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle.
Dev Cell 12, 671–682 .
10.1016/j.devcel.2007.04.005[7] Callebaut, I., de Gunzburg, J., Goud, B., and Mornon, J.P. (2001). RUN domains: a new family of domains involved in Ras-like GTPase signaling.
Trends Biochem Sci 26, 79–83 .
10.1016/S0968-0004(00)01730-8[8] Cao, X., and Barlowe, C. (2000). Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes.
J Cell Biol 149, 55–66 .
10.1083/jcb.149.1.55[9] Crighton, D., Wilkinson, S., O’Prey, J., Syed, N., Smith, P., Harrison, P.R., Gasco, M., Garrone, O., Crook, T., and Ryan, K.M. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis.
Cell 126, 121–134 .
[10] Darsow, T., Rieder, S.E., and Emr, S.D. (1997). A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole.
J Cell Biol 138, 517–529 .
10.1083/jcb.138.3.517[11] Dulubova, I., Yamaguchi, T., Wang, Y., Südhof, T.C., and Rizo, J. (2001). Vam3p structure reveals conserved and divergent properties of syntaxins.
Nat Struct Biol 8, 258–264 .
10.1038/85012[12] Egami, Y., Kiryu-Seo, S., Yoshimori, T., and Kiyama, H. (2005). Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons.
Biochem Biophys Res Commun 337, 1206–1213 .
10.1016/j.bbrc.2005.09.171[13] Epple, U.D., Suriapranata, I., Eskelinen, E.-L., and Thumm, M. (2001). Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole.
J Bacteriol 183, 5942–5955 .
10.1128/JB.183.20.5942-5955.2001[14] Epple, U.D., Eskelinen, E.L., and Thumm, M. (2003). Intravacuolar membrane lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/Aut5p affect its function?
J Biol Chem 278, 7810–7821 .
10.1074/jbc.M209309200[15] Eskelinen, E.L. (2005). Maturation of autophagic vacuoles in mammalian cells.
Autophagy 1, 1–10 .
10.4161/auto.1.1.1270[16] Eskelinen, E.L., Tanaka, Y., and Saftig, P. (2003). At the acidic edge: emerging functions for lysosomal membrane proteins.
Trends Cell Biol 13, 137–145 .
10.1016/S0962-8924(03)00005-9[17] Eskelinen, E.L., Schmidt, C.K., Neu, S., Willenborg, M., Fuertes, G., Salvador, N., Tanaka, Y., Lüllmann-Rauch, R., Hartmann, D., Heeren, J.,
. (2004). Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts.
Mol Biol Cell 15, 3132–3145 .
10.1091/mbc.E04-02-0103[18] Fader, C.M., Sánchez, D., Furlán, M., and Colombo, M.I. (2008). Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells.
Traffic 9, 230–250 .
10.1111/j.1600-0854.2007.00677.x[19] Fass, E., Shvets, E., Degani, I., Hirschberg, K., and Elazar, Z. (2006). Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes.
J Biol Chem 281, 36303–36316 .
10.1074/jbc.M607031200[20] Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes.
Mol Biol Cell 11, 4241–4257 .
[21] Gill, S.R., Schroer, T.A., Szilak, I., Steuer, E.R., Sheetz, M.P., and Cleveland, D.W. (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein.
J Cell Biol 115, 1639–1650 .
10.1083/jcb.115.6.1639[22] Gutierrez, M.G., Munafó, D.B., Berón, W., and Colombo, M.I. (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells.
J Cell Sci 117, 2687–2697 .
10.1242/jcs.01114[23] Hamasaki, M., and Yoshimori, T. (2010). Where do they come from? Insight into autophagosome formation.
FEBS Lett 584, 1296–1301 .
10.1016/j.febslet.2010.02.061[24] Hayakawa, A., Hayes, S.J., Lawe, D.C., Sudharshan, E., Tuft, R., Fogarty, K., Lambright, D., and Corvera, S. (2004). Structural basis for endosomal targeting by FYVE domains.
J Biol Chem 279, 5958–5966 .
10.1074/jbc.M310503200[25] Huynh, K.K., Eskelinen, E.L., Scott, C.C., Malevanets, A., Saftig, P., and Grinstein, S. (2007). LAMP proteins are required for fusion of lysosomes with phagosomes.
EMBO J 26, 313–324 .
10.1038/sj.emboj.7601511[26] Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T., and Fukuda, M. (2008). Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation.
Mol Biol Cell 19, 2916–2925 .
10.1091/mbc.E07-12-1231[27] J?ger, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., and Eskelinen, E.L. (2004). Role for Rab7 in maturation of late autophagic vacuoles.
J Cell Sci 117, 4837–4848 .
10.1242/jcs.01370[28] Jahn, R., and Scheller, R.H. (2006). SNAREs—engines for membrane fusion.
Nat Rev Mol Cell Biol 7, 631–643 .
10.1038/nrm2002[29] Jahreiss, L., Menzies, F.M., and Rubinsztein, D.C. (2008). The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes.
Traffic 9, 574–587 .
10.1111/j.1600-0854.2008.00701.x[30] Kanazawa, C., Morita, E., Yamada, M., Ishii, N., Miura, S., Asao, H., Yoshimori, T., and Sugamura, K. (2003). Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation.
Biochem Biophys Res Commun 309, 848–856 .
10.1016/j.bbrc.2003.08.078[31] Kimura, S., Noda, T., and Yoshimori, T. (2008). Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes.
Cell Struct Funct 33, 109–122 .
10.1247/csf.08005[32] Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions.
J Cell Sci 118, 7–18 .
10.1242/jcs.01620[33] Klionsky, D.J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade.
Nat Rev Mol Cell Biol 8, 931–937 .
10.1038/nrm2245[34] Kouno, T., Mizuguchi, M., Tanida, I., Ueno, T., Kanematsu, T., Mori, Y., Shinoda, H., Hirata, M., Kominami, E., and Kawano, K. (2005). Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains.
J Biol Chem 280, 24610–24617 .
10.1074/jbc.M413565200[35] Kucharczyk, R., Dupre, S., Avaro, S., Haguenauer-Tsapis, R., S?onimski, P.P., and Rytka, J. (2000). The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p.
J Cell Sci 113, 4301–4311 .
[36] Kucharczyk, R., Kierzek, A.M., Slonimski, P.P., and Rytka, J. (2001). The Ccz1 protein interacts with Ypt7 GTPase during fusion of multiple transport intermediates with the vacuole in S. cerevisiae.
J Cell Sci 114, 3137–3145 .
[37] Kutateladze, T.G. (2006). Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain.
Biochim Biophys Acta 1761, 868–877 .
[38] Lakadamyali, M., Rust, M.J., Babcock, H.P., and Zhuang, X. (2003). Visualizing infection of individual influenza viruses.
Proc Natl Acad Sci U S A 100, 9280–9285 .
10.1073/pnas.0832269100[39] Langosch, D., Hofmann, M., and Ungermann, C. (2007). The role of transmembrane domains in membrane fusion.
Cell Mol Life Sci 64, 850–864 .
10.1007/s00018-007-6439-x[40] Lee, J.A., Beigneux, A., Ahmad, S.T., Young, S.G., and Gao, F.B. (2007). ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration.
Curr Biol 17, 1561–1567 .
10.1016/j.cub.2007.07.029[41] Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B.H., and Jung, J.U. (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG.
Nat Cell Biol 8, 688–699 .
10.1038/ncb1426[42] Liang, C., Feng, P., Ku, B., Oh, B.H., Jung, J.U., Oh, B., and Jung, J. (2007). UVRAG: a new player in autophagy and tumor cell growth.
Autophagy 3, 69–71 .
[43] Liang, C., Lee, J.S., Inn, K.S., Gack, M.U., Li, Q., Roberts, E.A., Vergne, I., Deretic, V., Feng, P., Akazawa, C.,
. (2008a). Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking.
Nat Cell Biol 10, 776–787 .
10.1038/ncb1740[44] Liang, C., Sir, D., Lee, S., Ou, J.H., and Jung, J.U. (2008b). Beyond autophagy: the role of UVRAG in membrane trafficking.
Autophagy 4, 817–820 .
[45] Lindmo, K., Simonsen, A., Brech, A., Finley, K., Rusten, T.E., and Stenmark, H. (2006). A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body.
Exp Cell Res 312, 2018–2027 .
10.1016/j.yexcr.2006.03.002[46] Lloyd, J.B. (1996). Metabolite efflux and influx across the lysosome membrane.
Subcell Biochem 27, 361–386 .
[47] Lloyd, T.E., Atkinson, R., Wu, M.N., Zhou, Y., Pennetta, G., and Bellen, H.J. (2002). Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila.
Cell 108, 261–269 .
[48] Longatti, A., and Tooze, S.A. (2009). Vesicular trafficking and autophagosome formation.
Cell Death Differ 16, 956–965 .
10.1038/cdd.2009.39[49] Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein sequences.
Science 252, 1162–1164 .
10.1126/science.252.5009.1162[50] Mann, S.S., and Hammarback, J.A. (1994). Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B.
J Biol Chem 269, 11492–11497 .
[51] Marchler-Bauer, A., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M.,
. (2009). CDD: specific functional annotation with the Conserved Domain Database.
Nucleic Acids Res 37, D205–D210 .
10.1093/nar/gkn845[52] Marino, Z., and Heidi, M. (2001). Rab proteins as membrane prganizers.
Natl Rev 2, 107–118 .
10.1038/35052055[53] Mechler, B., and Wolf, D.H. (1981). Analysis of proteinase A function in yeast.
Eur J Biochem 121, 47–52 .
10.1111/j.1432-1033.1981.tb06427.x[54] Mehrpour, M., Esclatine, A., Beau, I., and Codogno, P. (2010). Overview of macroautophagy regulation in mammalian cells.
Cell Res 20, 748–762 .
10.1038/cr.2010.82[55] Mesa, R., Salomón, C., Roggero, M., Stahl, P.D., and Mayorga, L.S. (2001). Rab22a affects the morphology and function of the endocytic pathway.
J Cell Sci 114, 4041–4049 .
[56] Mima, J., Hickey, C.M., Xu, H., Jun, Y., and Wickner, W. (2008). Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones.
EMBO J 27, 2031–2042 .
10.1038/emboj.2008.139[57] Mizushima, N. (2007). Autophagy: process and function.
Genes Dev 21, 2861–2873 .
10.1101/gad.1599207[58] Munafó, D.B., and Colombo, M.I. (2002). Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24.
Traffic 3 , 472–482 .
10.1034/j.1600-0854.2002.30704.x[59] Nakamura, N., Matsuura, A., Wada, Y., and Ohsumi, Y. (1997). Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae.
J Biochem 121, 338–344 .
[60] Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast.
Nat Rev Mol Cell Biol 10, 458–467 .
10.1038/nrm2708[61] Nara, A., Mizushima, N., Yamamoto, A., Kabeya, Y., Ohsumi, Y., and Yoshimori, T. (2002). SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation.
Cell Struct Funct 27, 29–37 .
10.1247/csf.27.29[62] Nichols, B.J., Ungermann, C., Pelham, H.R.B., Wickner, W.T., and Haas, A. (1997). Homotypic vacuolar fusion mediated by t- and v-SNAREs.
Nature 387, 199–202 .
10.1038/387199a0[63] Novick, P., and Zerial, M. (1997). The diversity of Rab proteins in vesicle transport.
Curr Opin Cell Biol 9, 496–504 .
10.1016/S0955-0674(97)80025-7[64] Odorizzi, G., Babst, M., and Emr, S.D. (1998). Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body.
Cell 95, 847–858 .
[65] Odorizzi, G., Babst, M., and Emr, S.D. (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast.
Trends Biochem Sci 25, 229–235 .
10.1016/S0968-0004(00)01543-7[66] Olkkonen, V.M., Dupree, P., Killisch, I., Lütcke, A., Zerial, M., and Simons, K. (1993). Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily.
J Cell Sci 106, 1249–1261 .
[67] Pankiv, S., Alemu, E.A., Brech, A., Bruun, J.A., Lamark, T., Overvatn, A., Bj?rk?y, G., and Johansen, T. (2010). FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport.
J Cell Biol 188, 253–269 .
10.1083/jcb.200907015[68] Parlati, F., McNew, J.A., Fukuda, R., Miller, R., S?llner, T.H., and Rothman, J.E. (2000). Topological restriction of SNARE-dependent membrane fusion.
Nature 407, 194–198 .
10.1038/35025076[69] Parr, C.L., Keates, R.A., Bryksa, B.C., Ogawa, M., and Yada, R.Y. (2007). The structure and function of Saccharomyces cerevisiae proteinase A.
Yeast 24, 467–480 .
10.1002/yea.1485[70] Peplowska, K., Cabrera, M., and Ungermann, C. (2008). UVRAG reveals its second nature.
Nat Cell Biol 10, 759–761 .
10.1038/ncb0708-759[71] Price, A., Seals, D., Wickner, W., and Ungermann, C. (2000a). The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein.
J Cell Biol 148, 1231–1238 .
10.1083/jcb.148.6.1231[72] Price, A., Wickner, W., and Ungermann, C. (2000b). Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion.
J Cell Biol 148, 1223–1229 .
10.1083/jcb.148.6.1223[73] Pulipparacharuvil, S., Akbar, M.A., Ray, S., Sevrioukov, E.A., Haberman, A.S., Rohrer, J., and Kr?mer, H. (2005). Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.
J Cell Sci 118, 3663–3673 .
10.1242/jcs.02502[74] Raiborg, C., and Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.
Nature 458, 445–452 .
10.1038/nature07961[75] Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., Berger, Z., Vacher, C., O’Kane, C.J., Brown, S.D., and Rubinsztein, D.C. (2005). Dynein mutations impair autophagic clearance of aggregate-prone proteins.
Nat Genet 37, 771–776 .
10.1038/ng1591[76] Ravikumar, B., Futter, M., Jahreiss, L., Korolchuk, V.I., Lichtenberg , M., Luo, S., Massey, D.C., Menzies, F.M., Narayanan, U., Renna, M.,
. (2009). Mammalian macroautophagy at a glance.
J Cell Biol 122, 1707–1711 .
[77] Recacha, R., Boulet, A., Jollivet, F., Monier, S., Houdusse, A., Goud, B., and Khan, A.R. (2009). Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain.
Structure 17, 21–30 .
10.1016/j.str.2008.10.014[78] Rieder, S.E., and Emr, S.D. (1997). A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole.
Mol Biol Cell 8, 2307–2327 .
[79] Rothman, J.E. (1994). Mechanisms of intracellular protein transport.
Nature 372, 55–63 .
10.1038/372055a0[80] Rothman, J.E., and Wieland, F.T. (1996). Protein sorting by transport vesicles.
Science 272, 227–234 .
10.1126/science.272.5259.227[81] Rusten, T.E., and Stenmark, H. (2009). How do ESCRT proteins control autophagy?
J Cell Sci 122, 2179–2183 .
10.1242/jcs.050021[82] Rusten, T.E., Vaccari, T., Lindmo, K., Rodahl, L.M., Nezis, I.P., Sem-Jacobsen, C., Wendler, F., Vincent, J.P., Brech, A., Bilder, D.,
. (2007). ESCRTs and Fab1 regulate distinct steps of autophagy.
Curr Biol 17, 1817–1825 .
10.1016/j.cub.2007.09.032[83] Saftig, P., Beertsen, W., and Eskelinen, E.L. (2008). LAMP-2: a control step for phagosome and autophagosome maturation.
Autophagy 4, 510–512 .
[84] Sato, T.K., Darsow, T., and Emr, S.D. (1998). Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking.
Mol Cell Biol 18, 5308–5319 .
[85] Sato, T.K., Rehling, P., Peterson, M.R., and Emr, S.D. (2000). Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion.
Mol Cell 6, 661–671 .
10.1016/S1097-2765(00)00064-2[86] Satoh, A.K., O’Tousa, J.E., Ozaki, K., and Ready, D.F. (2005). Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors.
Development 132, 1487–1497 .
10.1242/dev.01704[87] Schroer, T.A., and Sheetz, M.P. (1991). Two activators of microtubule-based vesicle transport.
J Cell Biol 115, 1309–1318 .
10.1083/jcb.115.5.1309[88] Seals, D.F., Eitzen, G., Margolis, N., Wickner, W.T., and Price, A. (2000). A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion.
Proc Natl Acad Sci U S A 97, 9402–9407 .
10.1073/pnas.97.17.9402[89] Seglen, P.O., Berg, T.O., Blankson, H., Fengsrud, M., Holen, I., and Str?mhaug, P.E. (1996). Structural aspects of autophagy.
Adv Exp Med Biol 389, 103–111 .
[90] Shirahama, K., Noda, T., and Ohsumi, Y. (1997). Mutational analysis of Csc1/Vps4p: involvement of endosome in regulation of autophagy in yeast.
Cell Struct Funct 22, 501–509 .
10.1247/csf.22.501[91] S?llner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E. (1993). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.
Cell 75, 409–418 .
[92] Somsel Rodman, J., and Wandinger-Ness, A. (2000). Rab GTPases coordinate endocytosis.
J Cell Sci 113, 183–192 .
[93] Stroupe, C., Collins, K.M., Fratti, R.A., and Wickner, W. (2006). Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p.
EMBO J 25, 1579–1589 .
10.1038/sj.emboj.7601051[94] Sugawara, K., Suzuki, N.N., Fujioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8.
Genes Cells 9, 611–618 .
10.1111/j.1356-9597.2004.00750.x[95] Suriapranata, I., Epple, U.D., Bernreuther, D., Bredschneider, M., Sovarasteanu, K., and Thumm, M. (2000). The breakdown of autophagic vesicles inside the vacuole depends on Aut4p.
J Cell Sci 113, 4025–4033 .
[96] Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mulé, J.J.,
. (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis.
Nat Cell Biol 9, 1142–1151 .
10.1038/ncb1634[97] Takahashi, Y., Meyerkord, C.L., and Wang, H.G. (2008). BARgaining membranes for autophagosome formation: Regulation of autophagy and tumorigenesis by Bif-1/Endophilin B1.
Autophagy 4, 121–124 .
[98] Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction.
J Cell Biol 119, 301–311 .
10.1083/jcb.119.2.301[99] Tamai, K., Tanaka, N., Nara, A., Yamamoto, A., Nakagawa, I., Yoshimori, T., Ueno, Y., Shimosegawa, T., and Sugamura, K. (2007). Role of Hrs in maturation of autophagosomes in mammalian cells.
Biochem Biophys Res Commun 360, 721–727 .
10.1016/j.bbrc.2007.06.105[100] Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E.L., Hartmann, D., Lüllmann-Rauch, R., Janssen, P.M., Blanz, J., von Figura, K., and Saftig, P. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice.
Nature 406, 902–906 .
10.1038/35022595[101] Teter, S.A., Eggerton, K.P., Scott, S.V., Kim, J., Fischer, A.M., and Klionsky, D.J. (2001). Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase.
J Biol Chem 276, 2083–2087 .
[102] Ungermann, C., and Langosch, D. (2005). Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing.
J Cell Sci 118, 3819–3828 .
10.1242/jcs.02561[103] Ungermann, C., Nichols, B.J., Pelham, H.R.B., and Wickner, W. (1998). A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion.
J Cell Biol 140, 61–69 .
10.1083/jcb.140.1.61[104] Ungermann, C., von Mollard, G.F., Jensen, O.N., Margolis, N., Stevens, T.H., and Wickner, W. (1999). Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion.
J Cell Biol 145, 1435–1442 .
10.1083/jcb.145.7.1435[105] Ungermann, C., and Wickner, W. (1998). Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion.
EMBO J 17, 3269–3276 .
10.1093/emboj/17.12.3269[106] Wang, C.-W., and Klionsky, D.J. (2003). The molecular mechanism of autophagy.
Mol Med 9, 65–76 .
[107] Wang, C.-W., Stromhaug, P.E., Kauffman, E.J., Weisman, L.S., and Klionsky, D.J. (2003). Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage.
J Cell Biol 163, 973–985 .
10.1083/jcb.200308071[108] Wang, C.-W., Stromhaug, P.E., Shima, J., and Klionsky, D.J. (2002). The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways.
J Biol Chem 277, 47917–47927 .
10.1074/jbc.M208191200[109] Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., S?llner, T.H., and Rothman, J.E. (1998). SNAREpins: minimal machinery for membrane fusion.
Cell 92, 759–772 .
[110] White, S.R., and Lauring, B. (2007). AAA+ ATPases: achieving diversity of function with conserved machinery.
Traffic 8, 1657–1667 .
10.1111/j.1600-0854.2007.00642.x[111] Wurmser, A.E., Sato, T.K., and Emr S.D. (2000).New component of the vacuolar class C–Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion.
J Cell Biol 151, 551–62 .
10.1083/jcb.151.3.551[112] Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations.
Nat Cell Biol 9, 1102–1109 .
10.1038/ncb1007-1102[113] Xu, H., Jun, Y., Thompson, J., Yates, J., and Wickner, W. (2010). HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec1p during membrane fusion.
J EMBO 29, 1948–1960 .
10.1038/emboj.2010.97[114] Yang, Z., Huang, J., Geng, J., Nair, U., and Klionsky, D.J. (2006). Atg22 recycles amino acids to link the degradative and recycling functions of autophagy.
Mol Biol Cell 17, 5094–5104 .
10.1091/mbc.E06-06-0479[115] Yorimitsu, T., and Klionsky, D.J. (2005). Autophagy: molecular machinery for self-eating.
Cell Death Differ 12, 1542–1552 .
10.1038/sj.cdd.4401765[116] Yu, L., McPhee, C.K., Zheng, L., Mardones, G.A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F.,
. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR.
Nature 17, 942–946 .
10.1038/nature09076