[1] Baines, J.D., Koyama, A.H., Huang, T., and Roizman, B. (1994). The UL21 gene products of herpes simplex virus 1 are dispensable for growth in cultured cells.
J Virol 68, 2929–2936 .
[2] Baines, J.D., and Roizman, B. (1992). The UL11 gene of herpes simplex virus 1 encodes a function that facilitates nucleocapsid envelopment and egress from cells.
J Virol 66, 5168–5174 .
[3] Benach, J., Wang, L., Chen, Y., Ho, C.K., Lee, S., Seetharaman, J., Xiao, R., Acton, T.B., Montelione, G.T., Deng, H.,
. (2007). Structural and functional studies of the abundant tegument protein ORF52 from murine gammaherpesvirus 68.
J Biol Chem 282, 31534–31541 .
10.1074/jbc.M705637200[4] Benboudjema, L., Mulvey, M., Gao, Y., Pimplikar, S.W., and Mohr, I. (2003). Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides.
J Virol 77, 9192–9203 .
10.1128/JVI.77.17.9192-9203.2003[5] Bjerke, S.L., and Roller, R.J. (2006). Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress.
Virology 347, 261–276 .
10.1016/j.virol.2005.11.053[6] Bortz, E., Wang, L., Jia, Q., Wu, T.T., Whitelegge, J.P., Deng, H., Zhou, Z.H., and Sun, R. (2007). Murine gammaherpesvirus 68 ORF52 encodes a tegument protein required for virion morphogenesis in the cytoplasm.
J Virol 81, 10137–10150 .
10.1128/JVI.01233-06[7] Bresnahan, W.A., and Shenk, T.E. (2000). UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells.
Proc Natl Acad Sci U S A 97, 14506–14511 .
10.1073/pnas.97.26.14506[8] Britt, W.J., Jarvis, M., Seo, J.Y., Drummond, D., and Nelson, J. (2004). Rapid genetic engineering of human cytomegalovirus by using a lambda phage linear recombination system: demonstration that pp28 (UL99) is essential for production of infectious virus.
J Virol 78, 539–543 .
10.1128/JVI.78.1.539-543.2004[9] Bucks, M.A., O’Regan, K.J., Murphy, M.A., Wills, J.W., and Courtney, R.J. (2007). Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids.
Virology 361, 316–324 .
10.1016/j.virol.2006.11.031[10] Calderwood, M.A., Venkatesan, K., Xing, L., Chase, M.R., Vazquez, A., Holthaus, A.M., Ewence, A.E., Li, N., Hirozane-Kishikawa, T., Hill, D.E.,
. (2007). Epstein-Barr virus and virus human protein interaction maps.
Proc Natl Acad Sci U S A 104, 7606–7611 .
10.1073/pnas.0702332104[11] Castillo, J.P., and Kowalik, T.F. (2002). Human cytomegalovirus immediate early proteins and cell growth control.
Gene 290, 19–34 .
[12] Chang, Y., Cesarman, E., Pessin, M.S., Lee, F., Culpepper, J., Knowles, D.M., and Moore, P.S. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma.
Science 266, 1865–1869 .
10.1126/science.7997879[13] Chevillotte, M., Landwehr, S., Linta, L., Frascaroli, G., Lüske, A., Buser, C., Mertens, T., and von Einem, J. (2009). Major tegument protein pp65 of human cytomegalovirus is required for the incorporation of pUL69 and pUL97 into the virus particle and for viral growth in macrophages.
J Virol 83, 2480–2490 .
10.1128/JVI.01818-08[14] Chi, J.H., Harley, C.A., Mukhopadhyay, A., and Wilson, D.W. (2005). The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids.
J Gen Virol 86, 253–261 .
10.1099/vir.0.80444-0[15] Coller, K.E., Lee, J.I., Ueda, A., and Smith, G.A. (2007). The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins.
J Virol 81, 11790–11797 .
10.1128/JVI.01113-07[16] Dai, W., Jia, Q., Bortz, E., Shah, S., Liu, J., Atanasov, I., Li, X., Taylor, K.A., Sun, R., and Zhou, Z.H. (2008). Unique structures in a tumor herpesvirus revealed by cryo-electron tomography and microscopy.
J Struct Biol 161, 428–438 .
10.1016/j.jsb.2007.10.010[17] Davison, A.J., Eberle, R., Ehlers, B., Hayward, G.S., McGeoch, D.J., Minson, A.C., Pellett, P.E., Roizman, B., Studdert, M.J., and Thiry, E. (2009). The order Herpesvirales.
Arch Virol 154, 171–177 .
10.1007/s00705-008-0278-4[18] de Wind, N., Wagenaar, F., Pol, J., Kimman, T., and Berns, A. (1992). The pseudorabies virus homology of the herpes simplex virus UL21 gene product is a capsid protein which is involved in capsid maturation.
J Virol 66, 7096–7103 .
[19] Decker, L.L., Klaman, L.D., and Thorley-Lawson, D.A. (1996a). Detection of the latent form of Epstein-Barr virus DNA in the peripheral blood of healthy individuals.
J Virol 70, 3286–3289 .
[20] Decker, L.L., Shankar, P., Khan, G., Freeman, R.B., Dezube, B.J., Lieberman, J., and Thorley-Lawson, D.A. (1996b). The Kaposi sarcoma-associated herpesvirus (KSHV) is present as an intact latent genome in KS tissue but replicates in the peripheral blood mononuclear cells of KS patients.
J Exp Med 184, 283–288 .
10.1084/jem.184.1.283[21] del Rio, T., DeCoste, C.J., and Enquist, L.W. (2005). Actin is a component of the compensation mechanism in pseudorabies virus virions lacking the major tegument protein VP22.
J Virol 79, 8614–8619 .
10.1128/JVI.79.13.8614-8619.2005[22] Desai, P., Sexton, G.L., McCaffery, J.M., and Person, S. (2001). A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation.
J Virol 75, 10259–10271 .
10.1128/JVI.75.21.10259-10271.2001[23] Desai, P.J. (2000). A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells.
J Virol 74, 11608–11618 .
10.1128/JVI.74.24.11608-11618.2000[24] Diefenbach, R.J., Miranda-Saksena, M., Diefenbach, E., Holland, D.J., Boadle, R.A., Armati, P.J., and Cunningham, A.L. (2002). Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain.
J Virol 76, 3282–3291 .
10.1128/JVI.76.7.3282-3291.2002[25] D?hner, K., Wolfstein, A., Prank, U., Echeverri, C., Dujardin, D., Vallee, R., and Sodeik, B. (2002). Function of dynein and dynactin in herpes simplex virus capsid transport.
Mol Biol Cell 13, 2795–2809 .
10.1091/mbc.01-07-0348[26] Dupin, N., Fisher, C., Kellam, P., Ariad, S., Tulliez, M., Franck, N., van Marck, E., Salmon, D., Gorin, I., Escande, J.P.,
. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma.
Proc Natl Acad Sci U S A 96, 4546–4551 .
10.1073/pnas.96.8.4546[27] Elliott, G., Hafezi, W., Whiteley, A., and Bernard, E. (2005). Deletion of the herpes simplex virus VP22-encoding gene (UL49) alters the expression, localization, and virion incorporation of ICP0.
J Virol 79, 9735–9745 .
10.1128/JVI.79.15.9735-9745.2005[28] Elliott, G., Mouzakitis, G., and O’Hare, P. (1995). VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells.
J Virol 69, 7932–7941 .
[29] Farina, A., Feederle, R., Raffa, S., Gonnella, R., Santarelli, R., Frati, L., Angeloni, A., Torrisi, M.R., Faggioni, A., and Delecluse, H.J. (2005). BFRF1 of Epstein-Barr virus is essential for efficient primary viral envelopment and egress.
J Virol 79, 3703–3712 .
10.1128/JVI.79.6.3703-3712.2005[30] Farnsworth, A., Wisner, T.W., and Johnson, D.C. (2007a). Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD.
J Virol 81, 319–331 .
10.1128/JVI.01842-06[31] Farnsworth, A., Wisner, T.W., Webb, M., Roller, R., Cohen, G., Eisenberg, R., and Johnson, D.C. (2007b). Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.
Proc Natl Acad Sci U S A 104, 10187–10192 .
10.1073/pnas.0703790104[32] Fla?o, E., Husain, S.M., Sample, J.T., Woodland, D.L., and Blackman, M.A. (2000). Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages.
J Immunol 165, 1074–1081 .
[33] Fuchs, W., Granzow, H., Klupp, B.G., Kopp, M., and Mettenleiter, T.C. (2002a). The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions.
J Virol 76, 6729–6742 .
10.1128/JVI.76.13.6729-6742.2002[34] Fuchs, W., Klupp, B.G., Granzow, H., Hengartner, C., Brack, A., Mundt, A., Enquist, L.W., and Mettenleiter, T.C. (2002b). Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49.
J Virol 76, 8208–8217 .
10.1128/JVI.76.16.8208-8217.2002[35] Fuchs, W., Klupp, B.G., Granzow, H., and Mettenleiter, T.C. (2004). Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein.
J Virol 78, 11879–11889 .
10.1128/JVI.78.21.11879-11889.2004[36] Fuchs, W., Klupp, B.G., Granzow, H., Osterrieder, N., and Mettenleiter, T.C. (2002c). The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions.
J Virol 76, 364–378 .
10.1128/JVI.76.1.364-378.2002[37] Gaietta, G.M., Giepmans, B.N., Deerinck, T.J., Smith, W.B., Ngan, L., Llopis, J., Adams, S.R., Tsien, R.Y., and Ellisman, M.H. (2006). Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy.
Proc Natl Acad Sci U S A 103, 17777–17782 .
10.1073/pnas.0608509103[38] Gonnella, R., Farina, A., Santarelli, R., Raffa, S., Feederle, R., Bei, R., Granato, M., Modesti, A., Frati, L., Delecluse, H.J.,
. (2005). Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina.
J Virol 79, 3713–3727 .
10.1128/JVI.79.6.3713-3727.2005[39] Granato, M., Feederle, R., Farina, A., Gonnella, R., Santarelli, R., Hub, B., Faggioni, A., and Delecluse, H.J. (2008). Deletion of Epstein-Barr virus BFLF2 leads to impaired viral DNA packaging and primary egress as well as to the production of defective viral particles.
J Virol 82, 4042–4051 .
10.1128/JVI.02436-07[40] Granzow, H., Klupp, B.G., and Mettenleiter, T.C. (2004). The pseudorabies virus US3 protein is a component of primary and of mature virions.
J Virol 78, 1314–1323 .
10.1128/JVI.78.3.1314-1323.2004[41] Gross, S.T., Harley, C.A., and Wilson, D.W. (2003). The cytoplasmic tail of Herpes simplex virus glycoprotein H binds to the tegument protein VP16 in vitro and in vivo.
Virology 317, 1–12 .
10.1016/j.virol.2003.08.023[42] Guo, H., Wang, L., Peng, L., Zhou, Z.H., and Deng, H. (2009). Open reading frame 33 of a gammaherpesvirus encodes a tegument protein essential for virion morphogenesis and egress.
J Virol 83, 10582–10595 .
10.1128/JVI.00497-09[43] Harper, A.L., Meckes, D.G. Jr, Marsh, J.A., Ward, M.D., Yeh, P.C., Baird, N.L., Wilson, C.B., Semmes, O.J., and Wills, J.W. (2010). Interaction domains of the UL16 and UL21 tegument proteins of herpes simplex virus.
J Virol 84, 2963–2971 .
10.1128/JVI.02015-09[44] Heine, J.W., Honess, R.W., Cassai, E., and Roizman, B. (1974). Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains.
J Virol 14, 640–651 .
[45] Indran, S.V., Ballestas, M.E., and Britt, W.J. (2010). Bicaudal D1-dependent trafficking of human cytomegalovirus tegument protein pp150 in virus-infected cells.
J Virol 84, 3162–3177 .
10.1128/JVI.01776-09[46] Ishov, A.M., Vladimirova, O.V., and Maul, G.G. (2002). Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains.
J Virol 76, 7705–7712 .
10.1128/JVI.76.15.7705-7712.2002[47] Johannsen, E., Luftig, M., Chase, M.R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D., and Kieff, E. (2004). Proteins of purified Epstein-Barr virus.
Proc Natl Acad Sci U S A 101, 16286–16291 .
10.1073/pnas.0407320101[48] Jones, T.R., and Lee, S.W. (2004). An acidic cluster of human cytomegalovirus UL99 tegument protein is required for trafficking and function.
J Virol 78, 1488–1502 .
10.1128/JVI.78.3.1488-1502.2004[49] Kamen, D.E., Gross, S.T., Girvin, M.E., and Wilson, D.W. (2005). Structural basis for the physiological temperature dependence of the association of VP16 with the cytoplasmic tail of herpes simplex virus glycoprotein H.
J Virol 79, 6134–6141 .
10.1128/JVI.79.10.6134-6141.2005[50] Kamil, J.P., and Coen, D.M. (2007). Human cytomegalovirus protein kinase UL97 forms a complex with the tegument phosphoprotein pp65.
J Virol 81, 10659–10668 .
10.1128/JVI.00497-07[51] Kato, A., Tanaka, M., Yamamoto, M., Asai, R., Sata, T., Nishiyama, Y., and Kawaguchi, Y. (2008). Identification of a physiological phosphorylation site of the herpes simplex virus 1-encoded protein kinase Us3 which regulates its optimal catalytic activity in vitro and influences its function in infected cells.
J Virol 82, 6172–6189 .
10.1128/JVI.00044-08[52] Kato, A., Yamamoto, M., Ohno, T., Kodaira, H., Nishiyama, Y., and Kawaguchi, Y. (2005). Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1.
J Virol 79, 9325–9331 .
10.1128/JVI.79.14.9325-9331.2005[53] Kato, A., Yamamoto, M., Ohno, T., Tanaka, M., Sata, T., Nishiyama, Y., and Kawaguchi, Y. (2006). Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31.
J Virol 80, 1476–1486 .
10.1128/JVI.80.3.1476-1486.2006[54] Kato, K., Daikoku, T., Goshima, F., Kume, H., Yamaki, K., and Nishiyama, Y. (2000). Synthesis, subcellular localization and VP16 interaction of the herpes simplex virus type 2 UL46 gene product.
Arch Virol 145, 2149–2162 .
10.1007/s007050070045[55] Klupp, B.G., B?ttcher, S., Granzow, H., Kopp, M., and Mettenleiter, T.C. (2005). Complex formation between the UL16 and UL21 tegument proteins of pseudorabies virus.
J Virol 79, 1510–1522 .
10.1128/JVI.79.3.1510-1522.2005[56] Klupp, B.G., Fuchs, W., Granzow, H., Nixdorf, R., and Mettenleiter, T.C. (2002). Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein.
J Virol 76, 3065–3071 .
10.1128/JVI.76.6.3065-3071.2002[57] Klupp, B.G., Granzow, H., Fuchs, W., Keil, G.M., Finke, S., and Mettenleiter, T.C. (2007). Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins.
Proc Natl Acad Sci U S A 104, 7241–7246 .
10.1073/pnas.0701757104[58] Klupp, B.G., Granzow, H., and Mettenleiter, T.C. (2001a). Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus.
J Gen Virol 82, 2363–2371 .
[59] Klupp, B.G., Granzow, H., Mundt, E., and Mettenleiter, T.C. (2001b). Pseudorabies virus UL37 gene product is involved in secondary envelopment.
J Virol 75, 8927–8936 .
10.1128/JVI.75.19.8927-8936.2001[60] Ko, D.H., Cunningham, A.L., and Diefenbach, R.J. (2010). The major determinant for addition of tegument protein pUL48 (VP16) to capsids in herpes simplex virus type 1 is the presence of the major tegument protein pUL36 (VP1/2).
J Virol 84, 1397–1405 .
10.1128/JVI.01721-09[61] Kopp, M., Granzow, H., Fuchs, W., Klupp, B.G., Mundt, E., Karger, A., and Mettenleiter, T.C. (2003). The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm.
J Virol 77, 5339–5351 .
10.1128/JVI.77.9.5339-5351.2003[62] Kopp, M., Klupp, B.G., Granzow, H., Fuchs, W., and Mettenleiter, T.C. (2002). Identification and characterization of the pseudorabies virus tegument proteins UL46 and UL47: role for UL47 in virion morphogenesis in the cytoplasm.
J Virol 76, 8820–8833 .
10.1128/JVI.76.17.8820-8833.2002[63] Krishnan, H.H., Sharma-Walia, N., Zeng, L., Gao, S.J., and Chandran, B. (2005). Envelope glycoprotein gB of Kaposi’s sarcoma-associated herpesvirus is essential for egress from infected cells.
J Virol 79, 10952–10967 .
10.1128/JVI.79.17.10952-10967.2005[64] Krosky, P.M., Baek, M.C., and Coen, D.M. (2003). The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress.
J Virol 77, 905–914 .
10.1128/JVI.77.2.905-914.2003[65] Kutok, J.L., and Wang, F. (2006). Spectrum of Epstein-Barr virus-associated diseases.
Annu Rev Pathol 1, 375–404 .
10.1146/annurev.pathol.1.110304.100209[66] Lake, C.M., and Hutt-Fletcher, L.M. (2004). The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization.
Virology 320, 99–106 .
10.1016/j.virol.2003.11.018[67] Lanman, J., Crum, J., Deerinck, T.J., Gaietta, G.M., Schneemann, A., Sosinsky, G.E., Ellisman, M.H., and Johnson, J.E. (2008). Visualizing flock house virus infection in Drosophila cells with correlated fluorescence and electron microscopy.
J Struct Biol 161, 439–446 .
10.1016/j.jsb.2007.09.009[68] Leach, N., Bjerke, S.L., Christensen, D.K., Bouchard, J.M., Mou, F., Park, R., Baines, J., Haraguchi, T., and Roller, R.J. (2007). Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3.
J Virol 81, 10792–10803 .
10.1128/JVI.00196-07[69] Lee, S.K., and Longnecker, R. (1997). The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication.
J Virol 71, 4092–4097 .
[70] Leege, T., Granzow, H., Fuchs, W., Klupp, B.G., and Mettenleiter, T.C. (2009). Phenotypic similarities and differences between UL37-deleted pseudorabies virus and herpes simplex virus type 1.
J Gen Virol 90, 1560–1568 .
10.1099/vir.0.010322-0[71] Leuzinger, H., Ziegler, U., Schraner, E.M., Fraefel, C., Glauser, D.L., Heid, I., Ackermann, M., Mueller, M., and Wild, P. (2005). Herpes simplex virus 1 envelopment follows two diverse pathways.
J Virol 79, 13047–13059 .
10.1128/JVI.79.20.13047-13059.2005[72] Liu, F., and Zhou, Z.H. (2006). Comparative virion structures of human herpesviruses. In Human herpesviruses: biology, therapy, and immunoprophylaxis, G.C.-F. A. Arvin, P. Moore, et al., ed.
(Cambridge, United Kingdom, Cambridge University Press) , pp. 27–42 .
[73] Liu, Y., Cui, Z., Zhang, Z., Wei, H., Zhou, Y., Wang, M., and Zhang, X.E. (2009). The tegument protein UL94 of human cytomegalovirus as a binding partner for tegument protein pp28 identified by intracellular imaging.
Virology 388, 68–77 .
10.1016/j.virol.2009.03.007[74] Loomis, J.S., Bowzard, J.B., Courtney, R.J., and Wills, J.W. (2001). Intracellular trafficking of the UL11 tegument protein of herpes simplex virus type 1.
J Virol 75, 12209–12219 .
10.1128/JVI.75.24.12209-12219.2001[75] Loomis, J.S., Courtney, R.J., and Wills, J.W. (2003). Binding partners for the UL11 tegument protein of herpes simplex virus type 1.
J Virol 77, 11417–11424 .
10.1128/JVI.77.21.11417-11424.2003[76] Loret, S., Guay, G., and Lippé, R. (2008). Comprehensive characterization of extracellular herpes simplex virus type 1 virions.
J Virol 82, 8605–8618 .
10.1128/JVI.00904-08[77] MacLean, C.A., Clark, B., and McGeoch, D.J. (1989). Gene UL11 of herpes simplex virus type 1 encodes a virion protein which is myristylated.
J Gen Virol 70, 3147–3157 .
10.1099/0022-1317-70-12-3147[78] MacLean, C.A., Dolan, A., Jamieson, F.E., and McGeoch, D.J. (1992). The myristylated virion proteins of herpes simplex virus type 1: investigation of their role in the virus life cycle.
J Gen Virol 73, 539–547 .
10.1099/0022-1317-73-3-539[79] Martin, B.R., Giepmans, B.N., Adams, S.R., and Tsien, R.Y. (2005). Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity.
Nat Biotechnol 23, 1308–1314 .
10.1038/nbt1136[80] McNab, A.R., Desai, P., Person, S., Roof, L.L., Thomsen, D.R., Newcomb, W.W., Brown, J.C., and Homa, F.L. (1998). The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA.
J Virol 72, 1060–1070 .
[81] McNabb, D.S., and Courtney, R.J. (1992). Characterization of the large tegument protein (ICP1/2) of herpes simplex virus type 1.
Virology 190, 221–232 .
10.1016/0042-6822(92)91208-C[82] Meckes, D.G. Jr, Marsh, J.A., and Wills, J.W. (2010). Complex mechanisms for the packaging of the UL16 tegument protein into herpes simplex virus.
Virology 398, 208–213 .
10.1016/j.virol.2009.12.004[83] Mettenleiter, T.C. (2002). Herpesvirus assembly and egress.
J Virol 76, 1537–1547 .
10.1128/JVI.76.4.1537-1547.2002[84] Mettenleiter, T.C. (2004). Budding events in herpesvirus morphogenesis.
Virus Res 106, 167–180 .
10.1016/j.virusres.2004.08.013[85] Mettenleiter, T.C. (2006). Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle.
Vet Microbiol 113, 163–169 .
10.1016/j.vetmic.2005.11.040[86] Michael, K., Klupp, B.G., Mettenleiter, T.C., and Karger, A. (2006). Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E.
J Virol 80, 1332–1339 .
10.1128/JVI.80.3.1332-1339.2006[87] Michel, D., Pavi?, I., Zimmermann, A., Haupt, E., Wunderlich, K., Heuschmid, M., and Mertens, T. (1996). The UL97 gene product of human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase.
J Virol 70, 6340–6346 .
[88] M?hl, B.S., B?ttcher, S., Granzow, H., Kuhn, J., Klupp, B.G., and Mettenleiter, T.C. (2009). Intracellular localization of the pseudorabies virus large tegument protein pUL36.
J Virol 83, 9641–9651 .
10.1128/JVI.01045-09[89] Morris, J.B., Hofemeister, H., and O’Hare, P. (2007). Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein.
J Virol 81, 4429–4437 .
10.1128/JVI.02354-06[90] Mossman, K.L., Sherburne, R., Lavery, C., Duncan, J., and Smiley, J.R. (2000). Evidence that herpes simplex virus VP16 is required for viral egress downstream of the initial envelopment event.
J Virol 74, 6287–6299 .
10.1128/JVI.74.14.6287-6299.2000[91] Mou, F., Forest, T., and Baines, J.D. (2007). US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells.
J Virol 81, 6459–6470 .
10.1128/JVI.00380-07[92] Mou, F., Wills, E., and Baines, J.D. (2009). Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids.
J Virol 83, 5181–5191 .
10.1128/JVI.00090-09[93] Mou, F., Wills, E.G., Park, R., and Baines, J.D. (2008). Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane.
J Virol 82, 8094–8104 .
10.1128/JVI.00874-08[94] Muranyi, W., Haas, J., Wagner, M., Krohne, G., and Koszinowski, U.H. (2002). Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina.
Science 297, 854–857 .
10.1126/science.1071506[95] Murphy, M.A., Bucks, M.A., O’Regan, K.J., and Courtney, R.J. (2008). The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids.
Virology 376, 279–289 .
10.1016/j.virol.2008.03.018[96] Naldinho-Souto, R., Browne, H., and Minson, T. (2006). Herpes simplex virus tegument protein VP16 is a component of primary enveloped virions.
J Virol 80, 2582–2584 .
10.1128/JVI.80.5.2582-2584.2006[97] O’Regan, K.J., Murphy, M.A., Bucks, M.A., Wills, J.W., and Courtney, R.J. (2007). Incorporation of the herpes simplex virus type 1 tegument protein VP22 into the virus particle is independent of interaction with VP16.
Virology 369, 263–280 .
10.1016/j.virol.2007.07.020[98] Overton, H.A., McMillan, D.J., Klavinskis, L.S., Hope, L., Ritchie, A.J., and Wong-kai-in, P. (1992). Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion.
Virology 190, 184–192 .
10.1016/0042-6822(92)91204-8[99] Padula, M.E., Sydnor, M.L., and Wilson, D.W. (2009). Isolation and preliminary characterization of herpes simplex virus 1 primary enveloped virions from the perinuclear space.
J Virol 83, 4757–4765 .
10.1128/JVI.01927-08[100] Peeters, B., de Wind, N., Hooisma, M., Wagenaar, F., Gielkens, A., and Moormann, R. (1992). Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion.
J Virol 66, 894–905 .
[101] Prichard, M.N., Britt, W.J., Daily, S.L., Hartline, C.B., and Kern, E.R. (2005). Human cytomegalovirus UL97 Kinase is required for the normal intranuclear distribution of pp65 and virion morphogenesis.
J Virol 79, 15494–15502 .
10.1128/JVI.79.24.15494-15502.2005[102] Purves, F.C., Spector, D., and Roizman, B. (1991). The herpes simplex virus 1 protein kinase encoded by the US3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene.
J Virol 65, 5757–5764 .
[103] Reynolds, A.E., Liang, L., and Baines, J.D. (2004). Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes U(L)31 and U(L)34.
J Virol 78, 5564–5575 .
10.1128/JVI.78.11.5564-5575.2004[104] Reynolds, A.E., Wills, E.G., Roller, R.J., Ryckman, B.J., and Baines, J.D. (2002). Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids.
J Virol 76, 8939–8952 .
10.1128/JVI.76.17.8939-8952.2002[105] Rixon, F.J. (1993). Structure and assembly of herpesviruses.
Semin Virol 4, 135–144 .
10.1006/smvy.1993.1009[106] Roberts, A.P., Abaitua, F., O’Hare, P., McNab, D., Rixon, F.J., and Pasdeloup, D. (2009). Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1.
J Virol 83, 105–116 .
10.1128/JVI.01032-08[107] Roizman, B., Knipe, D.M., and Whitely, R.J. (2007). Herpes Simplex Virus. In Fields Virology, D.M.Knipe, Howley, P.M., ed.
(Philadelphia, Lippincott Williams&Wilkins) , pp. 2501–2601 .
[108] Roizman, B., and Pellett, P.E. (2001). Herpesviridae: a brief introduction, In
Fields virology, D.M.K.a.P.M. Howley, ed. (Philadelphia, PA., Lippincott-Raven Publishers) , pp. 2381–2398 .
[109] Rozen, R., Sathish, N., Li, Y., and Yuan, Y. (2008). Virion-wide protein interactions of Kaposi’s sarcoma-associated herpesvirus.
J Virol 82, 4742–4750 .
10.1128/JVI.02745-07[110] Ryckman, B.J., and Roller, R.J. (2004). Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship.
J Virol 78, 399–412 .
10.1128/JVI.78.1.399-412.2004[111] Sathish, N., Zhu, F.X., Yuan, Y., and Farzan, M. (2009). Kaposi’s sarcoma-associated herpesvirus ORF45 interacts with kinesin-2 transporting viral capsid-tegument complexes along microtubules.
PLoS Pathog 5, e1000332.
10.1371/journal.ppat.1000332[112] Schek, N., and Bachenheimer, S.L. (1985). Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells.
J Virol 55, 601–610 .
[113] Schimmer, C., and Neubauer, A. (2003). The equine herpesvirus 1 UL11 gene product localizes to the trans-golgi network and is involved in cell-to-cell spread.
Virology 308, 23–36 .
10.1016/S0042-6822(02)00060-0[114] Scott, E.S., and O’Hare, P. (2001). Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection.
J Virol 75, 8818–8830 .
10.1128/JVI.75.18.8818-8830.2001[115] Seo, J.Y., and Britt, W.J. (2006). Sequence requirements for localization of human cytomegalovirus tegument protein pp28 to the virus assembly compartment and for assembly of infectious virus.
J Virol 80, 5611–5626 .
10.1128/JVI.02630-05[116] Shanda, S.K., and Wilson, D.W. (2008). UL36p is required for efficient transport of membrane-associated herpes simplex virus type 1 along microtubules.
J Virol 82, 7388–7394 .
10.1128/JVI.00225-08[117] Silva, M.C., Schr?er, J., and Shenk, T. (2005). Human cytomegalovirus cell-to-cell spread in the absence of an essential assembly protein.
Proc Natl Acad Sci U S A 102, 2081–2086 .
10.1073/pnas.0409597102[118] Silva, M.C., Yu, Q.C., Enquist, L., and Shenk, T. (2003). Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids.
J Virol 77, 10594–10605 .
10.1128/JVI.77.19.10594-10605.2003[119] Simpson-Holley, M., Baines, J., Roller, R., and Knipe, D.M. (2004). Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery.
J Virol 78, 5591–5600 .
10.1128/JVI.78.11.5591-5600.2004[120] Simpson-Holley, M., Colgrove, R.C., Nalepa, G., Harper, J.W., and Knipe, D.M. (2005). Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection.
J Virol 79, 12840–12851 .
10.1128/JVI.79.20.12840-12851.2005[121] Smibert, C.A., Popova, B., Xiao, P., Capone, J.P., and Smiley, J.R. (1994). Herpes simplex virus VP16 forms a complex with the virion host shutoff protein vhs.
J Virol 68, 2339–2346 .
[122] S?derberg-Nauclér, C. (2006). Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer?
J Intern Med 259, 219–246 .
10.1111/j.1365-2796.2006.01618.x[123] Steininger, C. (2007). Clinical relevance of cytomegalovirus infection in patients with disorders of the immune system.
Clin Microbiol Infect 13, 953–963 .
10.1111/j.1469-0691.2007.01781.x[124] Stylianou, J., Maringer, K., Cook, R., Bernard, E., and Elliott, G. (2009). Virion incorporation of the herpes simplex virus type 1 tegument protein VP22 occurs via glycoprotein E-specific recruitment to the late secretory pathway.
J Virol 83, 5204–5218 .
10.1128/JVI.00069-09[125] Subak-Sharpe, J.H., and Dargan, D.J. (1998). HSV molecular biology: general aspects of herpes simplex virus molecular biology.
Virus Genes 16, 239–251 .
10.1023/A:1008068902673[126] Sunil-Chandra, N.P., Efstathiou, S., and Nash, A.A. (1992). Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo.
J Gen Virol 73, 3275–3279 .
10.1099/0022-1317-73-12-3275[127] Takakuwa, H., Goshima, F., Koshizuka, T., Murata, T., Daikoku, T., and Nishiyama, Y. (2001). Herpes simplex virus encodes a virion-associated protein which promotes long cellular processes in over-expressing cells.
Genes Cells 6, 955–966 .
10.1046/j.1365-2443.2001.00475.x[128] Tandon, R., and Mocarski, E.S. (2008). Control of cytoplasmic maturation events by cytomegalovirus tegument protein pp150.
J Virol 82, 9433–9444 .
10.1128/JVI.00533-08[129] Uetz, P., Dong, Y.A., Zeretzke, C., Atzler, C., Baiker, A., Berger, B., Rajagopala, S.V., Roupelieva, M., Rose, D., Fossum, E.,
. (2006). Herpesviral protein networks and their interaction with the human proteome.
Science 311, 239–242 .
10.1126/science.1116804[130] Varnum, S.M., Streblow, D.N., Monroe, M.E., Smith, P., Auberry, K.J., Pasa-Tolic, L., Wang, D., Camp, D.G. 2nd, Rodland, K., Wiley, S.,
. (2004). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome.
J Virol 78, 10960–10966 .
10.1128/JVI.78.20.10960-10966.2004[131] Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J. (2005). Determination of interactions between tegument proteins of herpes simplex virus type 1.
J Virol 79, 9566–9571 .
10.1128/JVI.79.15.9566-9571.2005[132] Wagenaar, F., Pol, J.M., Peeters, B., Gielkens, A.L., de Wind, N., and Kimman, T.G. (1995). The US3-encoded protein kinase from pseudorabies virus affects egress of virions from the nucleus.
J Gen Virol 76, 1851–1859 .
10.1099/0022-1317-76-7-1851[133] Wild, P., Engels, M., Senn, C., Tobler, K., Ziegler, U., Schraner, E.M., Loepfe, E., Ackermann, M., Mueller, M., and Walther, P. (2005). Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells.
J Virol 79, 1071–1083 .
10.1128/JVI.79.2.1071-1083.2005[134] Wild, P., Schraner, E.M., Cantieni, D., Loepfe, E., Walther, P., Müller, M., and Engels, M. (2002). The significance of the Golgi complex in envelopment of bovine herpesvirus 1 (BHV-1) as revealed by cryobased electron microscopy.
Micron 33, 327–337 .
10.1016/S0968-4328(01)00037-3[135] Wild, P., Senn, C., Manera, C.L., Sutter, E., Schraner, E.M., Tobler, K., Ackermann, M., Ziegler, U., Lucas, M.S., and Kaech, A. (2009). Exploring the nuclear envelope of herpes simplex virus 1-infected cells by high-resolution microscopy.
J Virol 83, 408–419 .
10.1128/JVI.01568-08[136] Wisner, T.W., Wright, C.C., Kato, A., Kawaguchi, Y., Mou, F., Baines, J.D., Roller, R.J., and Johnson, D.C. (2009). Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.
J Virol 83, 3115–3126 .
10.1128/JVI.01462-08[137] Wolf, D.G., Courcelle, C.T., Prichard, M.N., and Mocarski, E.S. (2001). Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation.
Proc Natl Acad Sci U S A 98, 1895–1900 .
10.1073/pnas.98.4.1895[138] Wolfstein, A., Nagel, C.H., Radtke, K., D?hner, K., Allan, V.J., and Sodeik, B. (2006). The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro.
Traffic 7, 227–237 .
10.1111/j.1600-0854.2005.00379.x[139] Yeh, P.C., Meckes, D.G. Jr, and Wills, J.W. (2008). Analysis of the interaction between the UL11 and UL16 tegument proteins of herpes simplex virus.
J Virol 82, 10693–10700 .
10.1128/JVI.01230-08[140] Zhang, Y., Sirko, D.A., and McKnight, J.L. (1991). Role of herpes simplex virus type 1 UL46 and UL47 in alpha TIF-mediated transcriptional induction: characterization of three viral deletion mutants.
J Virol 65, 829–841 .
[141] Zhou, Z.H., Chen, D.H., Jakana, J., Rixon, F.J., and Chiu, W. (1999). Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions.
J Virol 73, 3210–3218 .
[142] Zhu, F.X., Chong, J.M., Wu, L., and Yuan, Y. (2005). Virion proteins of Kaposi’s sarcoma-associated herpesvirus.
J Virol 79, 800–811 .
10.1128/JVI.79.2.800-811.2005[143] Zhu, F.X., King, S.M., Smith, E.J., Levy, D.E., and Yuan, Y. (2002). A Kaposi’s sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation.
Proc Natl Acad Sci U S A 99, 5573–5578 .
10.1073/pnas.082420599[144] Zhu, Q., and Courtney, R.J. (1994). Chemical cross-linking of virion envelope and tegument proteins of herpes simplex virus type 1.
Virology 204, 590–599 .
10.1006/viro.1994.1573