Trafficking abnormality and ER stress underlie functional deficiency of hearing impairment-associated connexin-31 mutants

Kun Xia1, Hong Ma2, Hui Xiong2, Qian Pan1, Liangqun Huang1, Danling Wang1, Zhuohua Zhang1,2()

PDF(439 KB)
PDF(439 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (10) : 935-943. DOI: 10.1007/s13238-010-0118-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Trafficking abnormality and ER stress underlie functional deficiency of hearing impairment-associated connexin-31 mutants

  • Kun Xia1, Hong Ma2, Hui Xiong2, Qian Pan1, Liangqun Huang1, Danling Wang1, Zhuohua Zhang1,2()
Author information +
History +

Abstract

Hearing impairment (HI) affects 1/1000 children and over 2% of the aged population. We have previously reported that mutations in the gene encoding gap junction protein connexin-31 (Cx31) are associated with HI. The pathological mechanism of the disease mutations remains unknown. Here, we show that expression of Cx31 in the mouse inner ear is developmentally regulated with a high level in adult inner hair cells and spiral ganglion neurons that are critical for the hearing process. In transfected cells, wild type Cx31 protein (Cx31wt) forms functional gap junction at cell-cell-contacts. In contrast, two HI-associated Cx31 mutants, Cx31R180X and Cx31E183K resided primarily in the ER and Golgi-like intracellular punctate structures, respectively, and failed to mediate lucifer yellow transfer. Expression of Cx31 mutants but not Cx31wt leads to upregulation of and increased association with the ER chaperone BiP indicating ER stress induction. Together, the HI-associated Cx31 mutants are impaired in trafficking, promote ER stress, and hence lose the ability to assemble functional gap junctions. The study reveals a potential pathological mechanism of HI-associated Cx31 mutations.

Keywords

gap junction / bip / inner ear / protein folding

Cite this article

Download citation ▾
Kun Xia, Hong Ma, Hui Xiong, Qian Pan, Liangqun Huang, Danling Wang, Zhuohua Zhang. Trafficking abnormality and ER stress underlie functional deficiency of hearing impairment-associated connexin-31 mutants. Prot Cell, 2010, 1(10): 935‒943 https://doi.org/10.1007/s13238-010-0118-7

References

[1] Aridor, M., and Balch, W.E. (1999). Integration of endoplasmic reticulum signaling in health and disease. Nat Med 5, 745-751 .10.1038/10466
[2] Bone, L.J., Deschenes, S.M., Balice-Gordon, R.J., Fischbeck, K.H., and Scherer, S.S. (1997). Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol Dis 4, 221-230 .10.1006/nbdi.1997.0152
[3] Bruzzone, R., Gomes, D., Denoyelle, E., Duval, N., Perea, J., Veronesi, V., Weil, D., Petit, C., Gabellec, M.M., D'Andrea, P., . (2001). Functional analysis of a dominant mutation of human connexin26 associated with nonsyndromic deafness. Cell Commun Adhes 8, 425-431 .10.3109/15419060109080765
[4] Bruzzone, R., Veronesi, V., Gomes, D., Bicego, M., Duval, N., Marlin, S., Petit, C., D'Andrea, P., and White, T.W. (2003). Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett 533, 79-88 .10.1016/S0014-5793(02)03755-9
[5] Cohen-Salmon, M., Ott, T., Michel, V., Hardelin, J.P., Perfettini, I., Eybalin, M., Wu, T., Marcus, D.C., Wangemann, P., Willecke, K., . (2002). Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12, 1106-1111 .10.1016/S0960-9822(02)00904-1
[6] Dahl, E., Manthey, D., Chen, Y., Schwarz, H.J., Chang, Y.S., Lalley, P.A., Nicholson, B.J., and Willecke, K. (1996). Molecular cloning and functional expression of mouse connexin-30,a gap junction gene highly expressed in adult brain and skin. J Biol Chem 271, 17903-17910 .10.1074/jbc.271.30.17903
[7] Das Sarma, J., Meyer, R.A., Wang, F., Abraham, V., Lo, C.W., and Koval, M. (2001). Multimeric connexin interactions prior to the trans-Golgi network. J Cell Sci 114, 4013-4024 .
[8] Das Sarma, J., Wang, F., and Koval, M. (2002). Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J Biol Chem 277, 20911-20918 .10.1074/jbc.M111498200
[9] Denoyelle, F., Weil, D., Maw, M.A., Wilcox, S.A., Lench, N.J., Allen-Powell, D.R., Osborn, A.H., Dahl, H.H., Middleton, A., Houseman, M.J., . (1997). Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6, 2173-2177 .10.1093/hmg/6.12.2173
[10] Di, W.L., Monypenny, J., Common, J.E., Kennedy, C.T., Holland, K.A., Leigh, I.M., Rugg, E.L., Zicha, D., and Kelsell, D.P. (2002). Defective trafficking and cell death is characteristic of skin disease-associated connexin 31 mutations. Hum Mol Genet 11, 2005-2014 .10.1093/hmg/11.17.2005
[11] Elfgang, C., Eckert, R., Lichtenberg-Frate, H., Butterweck, A., Traub, O., Klein, R.A., Hulser, D.F., and Willecke, K. (1995). Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129, 805-817 .10.1083/jcb.129.3.805
[12] Ellgaard, L., and Helenius, A. (2001). ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13, 431-437 .10.1016/S0955-0674(00)00233-7
[13] Ellgaard, L., Molinari, M., and Helenius, A. (1999). Setting the standards: quality control in the secretory pathway. Science 286, 1882-1888 .10.1126/science.286.5446.1882
[14] Goodenough, D.A., Goliger, J.A., and Paul, D.L. (1996). Connexins, connexons, and intercellular communication. Annu Rev Biochem 65, 475-502 .10.1146/annurev.bi.65.070196.002355
[15] Goodenough, D.A., and Paul, D.L. (2003). Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4, 285-294 .10.1038/nrm1072
[16] Grifa, A., Wagner, C.A., D'Ambrosio, L., Melchionda, S., Bernardi, F., Lopez-Bigas, N., Rabionet, R., Arbones, M., Monica, M.D., Estivill, X., . (1999). Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23, 16-18 .10.1038/12612
[17] Kelsell, D.P., Di, W.L., and Houseman, M.J. (2001a). Connexin mutations in skin disease and hearing loss. Am J Hum Genet 68, 559-568 .10.1086/318803
[18] Kelsell, D.P., Dunlop, J., and Hodgins, M.B. (2001b). Human diseases: clues to cracking the connexin code? Trends Cell Biol 11, 2-6 .10.1016/S0962-8924(00)01866-3
[19] Kelsell, D.P., Dunlop, J., Stevens, H.P., Lench, N.J., Liang, J.N., Parry, G., Mueller, R.F., and Leigh, I.M. (1997). Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387, 80-83 .10.1038/387080a0
[20] Kim, P.S., and Arvan, P. (1998). Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr Rev 19, 173-202 .10.1210/er.19.2.173
[21] Kumar, N.M., Friend, D.S., and Gilula, N.B. (1995). Synthesis and assembly of human beta 1 gap junctions in BHK cells by DNA transfection with the human beta 1 cDNA. J Cell Sci 108 (Pt 12), 3725-3734 .
[22] Lopez-Bigas, N., Arbones, M.L., Estivill, X., and Simonneau, L. (2002a). Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea. Mech Dev 119 Suppl 1, S111-115 .10.1016/S0925-4773(03)00102-3
[23] Lopez-Bigas, N., Melchionda, S., Gasparini, P., Borragan, A., Arbones, M.L., and Estivill, X. (2002b). A common frameshift mutation and other variants in GJB4 (connexin 30.3): Analysis of hearing impairment families. Hum Mutat 19, 458.10.1002/humu.9023
[24] Lopez-Bigas, N., Olive, M., Rabionet, R., Ben-David, O., Martinez-Matos, J.A., Bravo, O., Banchs, I., Volpini, V., Gasparini, P., Avraham, K.B., . (2001). Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet 10, 947-952 .10.1093/hmg/10.9.947
[25] Musil, L.S., and Goodenough, D.A. (1991). Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115, 1357-1374 .10.1083/jcb.115.5.1357
[26] Petit, C., Levilliers, J., and Hardelin, J.P. (2001). Molecular genetics of hearing loss. Annu Rev Genet 35, 589-646 .10.1146/annurev.genet.35.102401.091224
[27] Plum, A., Winterhager, E., Pesch, J., Lautermann, J., Hallas, G., Rosentreter, B., Traub, O., Herberhold, C., and Willecke, K. (2001). Connexin31-deficiency in mice causes transient placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev Biol 231, 334-347 .10.1006/dbio.2000.0148
[28] Reuss, B., Hellmann, P., Dahl, E., Traub, O., Butterweck, A., Grummer, R., and Winterhager, E. (1996). Connexins and E-cadherin are differentially expressed during trophoblast invasion and placenta differentiation in the rat. Dev Dyn 205, 172-182 .10.1002/(SICI)1097-0177(199602)205:2<172::AID-AJA8>3.0.CO;2-F
[29] Richard, G., Smith, L.E., Bailey, R.A., Itin, P., Hohl, D., Epstein, E.H., Jr., DiGiovanna, J.J., Compton, J.G., and Bale, S.J. (1998). Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 20, 366-369 .10.1038/3840
[30] Simon, A.M., and Goodenough, D.A. (1998). Diverse functions of vertebrate gap junctions. Trends Cell Biol 8, 477-483 .10.1016/S0962-8924(98)01372-5
[31] VanSlyke, J.K., Deschenes, S.M., and Musil, L.S. (2000). Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 11, 1933-1946 .
[32] Wang, Y., Mehta, P.P., and Rose, B. (1995). Inhibition of glycosylation induces formation of open connexin-43 cell-to-cell channels and phosphorylation and triton X-100 insolubility of connexin-43. J Biol Chem 270, 26581-26585 .10.1074/jbc.270.44.26581
[33] Watts, G.D., and Chance, P.F. (2002). Molecular basis of hereditary neuropathies. Adv Neurol 88, 133-146 .
[34] White, T.W. (2000). Functional analysis of human Cx26 mutations associated with deafness. Brain Res Brain Res Rev 32, 181-183 .10.1016/S0165-0173(99)00079-X
[35] White, T.W., Deans, M.R., Kelsell, D.P., and Paul, D.L. (1998). Connexin mutations in deafness. Nature 394, 630-631 .10.1038/29202
[36] Xia, J.H., Liu, C.Y., Tang, B.S., Pan, Q., Huang, L., Dai, H.P., Zhang, B.R., Xie, W., Hu, D.X., Zheng, D., . (1998). Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 20, 370-373 .10.1038/3845
[37] Zelante, L., Gasparini, P., Estivill, X., Melchionda, S., D'Agruma, L., Govea, N., Mila, M., Monica, M.D., Lutfi, J., Shohat, M., . (1997). Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6, 1605-1609 .10.1093/hmg/6.9.1605
[38] Zhang, Z., Hartmann, H., Do, V.M., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., Sommer, B., van de Wetering, M., Clevers, H., Saftig, P., . (1998). Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698-702 .10.1038/27208
[39] Zhang, Z., Morla, A.O., Vuori, K., Bauer, J.S., Juliano, R.L., and Ruoslahti, E. (1993). The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin. J Cell Biol 122, 235-242 .10.1083/jcb.122.1.235
AI Summary AI Mindmap
PDF(439 KB)

Accesses

Citations

Detail

Sections
Recommended

/