A transcription assay for EWS oncoproteins in Xenopus oocytes

King Pan Ng, Felix Cheung, Kevin A.W. Lee()

PDF(282 KB)
PDF(282 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (10) : 927-934. DOI: 10.1007/s13238-010-0114-y
COMMUNICATION
COMMUNICATION

A transcription assay for EWS oncoproteins in Xenopus oocytes

  • King Pan Ng, Felix Cheung, Kevin A.W. Lee()
Author information +
History +

Abstract

Aberrant chromosomal fusion of the Ewing's sarcoma oncogene (EWS) to several different cellular partners produces the Ewing's family of oncoproteins (EWS-fusion-proteins, EFPs) and associated tumors (EFTs). EFPs are potent transcriptional activators, dependent on the N-terminal region of EWS (the EWS-activation-domain, EAD) and this function is thought to be central to EFT oncogenesis and maintenance. Thus EFPs are promising therapeutic targets, but detailed molecular studies will be pivotal for exploring this potential. Such studies have so far largely been restricted to intact mammalian cells while recent evidence has indicated that a mammalian cell-free transcription system may not support bona fide EAD function. Therefore, the lack of manipulatable assays for the EAD presents a significant barrier to progress. Using Xenopus laevis oocytes we describe a plasmid-based micro-injection assay that supports efficient, bona fide EAD transcriptional activity and hence provides a new vehicle for molecular dissection of the EAD.

Keywords

EWS/ATF1 / Ewing's sarcoma / microinjection / Xenopus oocytes / transcription / EWS-activation domain

Cite this article

Download citation ▾
King Pan Ng, Felix Cheung, Kevin A.W. Lee. A transcription assay for EWS oncoproteins in Xenopus oocytes. Prot Cell, 2010, 1(10): 927‒934 https://doi.org/10.1007/s13238-010-0114-y

References

[1] Arvand, A., and Denny, C.T. (2001). Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20, 5747–5754 .10.1038/sj.onc.1204598
[2] Azuma, M., Embree, L.J., Sabaawy, H., and Hickstein, D.D. (2007). Ewing sarcoma protein Ewsr1 maintains mitotic integrity and proneural cell survival in the zebra fish embryo. PLoS ONE 10, e979.10.1371/journal.pone.0000979
[3] Bachmaier, R., Aryee, D.N.T., Jug, G., Kauer, M., Kreppel, M., Lee, K.A.W., and Kovar, H. (2009). O-GlcNAcylation is involved in the transcriptional activity of EWS-FLI1 in Ewing’s sarcoma. Oncogene 28, 1280–1284 .10.1038/onc.2008.484
[4] Brown, A.D., Lopez-Terrada, D., Denny, C.T., and Lee, K.A.W. (1995). Promoters containing ATF-binding sites are de-regulated in tumour-derived cell lines that express the EWS/ATF1 oncogene. Oncogene 10, 1749–1756 .
[5] Carey, M., Kolman, J., Katz, D.A., Gradoville, L., Barberis, L., and Miller, G. (1992). Transcriptional synergy by the Epstein-Barr virus transactivator ZEBRA. J Virol 66, 4803–4813 .
[6] Davis, I.J., Kim, J.J., Ozsolak, F., Widlund, H.R., Rozenblatt-Rosen, O., Granter, S.R., Du, J., Fletcher, J.A., Denny, C.T., Lessnick, S.L., . (2006). Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell 9, 473–484 .10.1016/j.ccr.2006.04.021
[7] Feng, L., and Lee, K.A.W. (2001). A repetitive element containing a critical tyrosine residue is required for transcriptional activation by the EWS/ATF1 oncogene. Oncogene 20, 4161–4168 .10.1038/sj.onc.1204522
[8] Goldin, A.L. (1992). Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 207, 266–279 .10.1016/0076-6879(92)07017-I
[9] Guille, M. (1999). Microinjection into Xenopus oocytes and embryos. Methods Mol Biol 127, 111–123 .10.1385/1-59259-678-9:111
[10] Gurdon, J.B., and Wakefield, L. (1986). Microinjection of Amphibian Oocytes and Eggs for the Analysis of Transcription. Microinjection and Organelle Transplantation Techniques. Academic Press Inc. , pp 269–299 .
[11] Gurdon, J.B., and Wickens, M.P. (1983). The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol 101, 370–386 .10.1016/0076-6879(83)01028-9
[12] Janknecht, R. (2005). EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene 363, 1–14 .
[13] Jones, N.C., Richter, J.D., Weeks, D.L., and Smith, L.D. (1983). Regulation of adenovirus transcription by an E1a gene in microinjected Xenopus laevis oocytes. Mol Cell Biol 3, 2131–2142 .
[14] Kim, J., Lee, J.M., Branton, P.E., and Pelletier, J. (1999). Modification of EWS/WT1 functional properties by phosphorylation. Proc Natl Acad Sci U S A 96, 14300–14305 .10.1073/pnas.96.25.14300
[15] Kim, J., Lee, J.M., Branton, P.E., and Pelletier, J. (2000). Modulation of EWS/WT1 activity by the v-Src protein tyrosine kinase. FEBS Lett 474, 121–128 .10.1016/S0014-5793(00)01590-8
[16] Kim, J., and Pelletier, J. (1999). Molecular genetics of chromosome translocations involving EWS and related family members. Physiol Genomics 1, 127–138 .
[17] Kovar, H., Aryee, D., and Zoubek, A. (1999). The Ewing family of tumors and the search for the Achilles’ heel. Curr Opin Oncol 11, 275–284 .10.1097/00001622-199907000-00007
[18] Krajewski, W., and Lee, K.A.W. (1994). A monomeric derivative of the cellular transcription factor CREB functions as a constitutive activator. Mol Cell Biol 14, 7204–7210 .
[19] Law, W.J., Cann, K.L., and Hicks, G.G. (2006). TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomics Proteomics 5, 8–14 .10.1093/bfgp/ell015
[20] Li, K.K.C., and Lee, K.A.W. (2000). Transcriptional activation by the Ewing’s sarcoma (EWS) oncogene can be cis-repressed by the EWS RNA-binding domain. J Biol Chem 275, 23053–23058 .10.1074/jbc.M002961200
[21] MacArthur, H., and Walter, G. (1984). Monoclonal antibodies specific for the carboxy terminus of simian virus 40 large T antigen. J Virol 52, 483–491 .
[22] Masson, N., Ellis, M., Goodbourn, S., and Lee, K.A.W. (1992). Cyclic AMP response element-binding protein and the catalytic subunit of protein kinase A are present in F9 embryonal carcinoma cells but are unable to activate the somatostatin promoter. Mol Cell Biol 12, 1096–1106 .
[23] Ng, K.P., Li, K.K.C., and Lee, K.A.W. (2009). In vitro activity of the EWS oncogene transcriptional activation domain. Biochemistry 48, 2849–2857 .10.1021/bi802366h
[24] Ng, K.P., Potikyan, G., Savene, R.O., Denny, C.T., Uversky, V.N., and Lee, K.A.W. (2007). Multiple aromatic side chains within a disordered structure are critical for transcription and transforming activity of EWS family oncoproteins. Proc Natl Acad Sci U S A 104, 479–484 .10.1073/pnas.0607007104
[25] Olsen, R.J., and Hinrichs, S.H. (2001). Phosphorylation of the EWS IQ domain regulates transcriptional activity of the EWS/ATF1 and EWS/FLI1 fusion proteins. Oncogene 20, 1756–1764 .10.1038/sj.onc.1204268
[26] Pan, S., Ming, K.Y., Dunn, T.A., Li, K.K.C., and Lee, K.A.W. (1998). The EWS/ATF1 fusion protein contains a dispersed activation domain that functions directly. Oncogene 16, 1625–1631 .10.1038/sj.onc.1201671
[27] Prieur, A., Tirode, F., Cohen, P., and Delattre, O. (2004). EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 24, 7275–7283 .10.1128/MCB.24.16.7275-7283.2004
[28] Ribeiro, A., Brown, A.D., and Lee, K.A.W. (1994). An in vivo assay for members of the CREB family of transcription factors. J Biol Chem 269, 31124–31128 .
[29] Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., . (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 .10.1038/nature04209
[30] Sadowski, I., and Ptashne, M. (1989). A vector for expressing GAL4(1-147) fusions in mammalian cells. Nucleic Acids Res 17, 7539.10.1093/nar/17.18.7539
[31] Zhou, H., and Lee, K.A.W. (2001). An hsRPB4/7-dependent yeast assay for trans-activation by the EWS oncogene. Oncogene 20, 1519–1524 .10.1038/sj.onc.1204135
[32] Zucman, J., Delattre, O., Desmaze, C., Epstein, A.L., Stenman, G., Speleman, F., Fletchers, C.D.M., Aurias, A., and Thomas, G. (1993). EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 4, 341–345 .10.1038/ng0893-341
AI Summary AI Mindmap
PDF(282 KB)

Accesses

Citations

Detail

Sections
Recommended

/