Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells

Xiaoli Zhu1, Ya Cao2, Zhiqiang Liang1, Genxi Li1,2()

PDF(237 KB)
PDF(237 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (9) : 842-846. DOI: 10.1007/s13238-010-0110-2
COMMUNICATION
COMMUNICATION

Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells

  • Xiaoli Zhu1, Ya Cao2, Zhiqiang Liang1, Genxi Li1,2()
Author information +
History +

Abstract

This paper reports a novel method to detect human leukemic lymphoblasts (CCRF-CEM cells). While the aptamer of the cancer cells was employed as the recognition element to target cancer cells, peroxidase-active DNAzyme was used as the sensing element to produce catalysis-induced colorimetric signals. The elegant architecture integrating the aptamer and DNAzyme made it feasible to detect cancer cells easily and rapidly by the color change of the substrate for DNAzyme. Experimental results showed that 500 cells can well indicate the cancer, while as control, 250,000 Islet Island Beta cells only show tiny signals, suggesting that the method proposed in this paper has considerable sensitivity and selectivity. Furthermore, since it does not require expensive apparatus, or modification or label of DNA chains, the method we present here is also cost-effective and conveniently operated, implying potential applications in future cancer diagnosis.

Keywords

CCRF-CEM acute leukemia cells / aptamer / DNAzyme / colorimetry

Cite this article

Download citation ▾
Xiaoli Zhu, Ya Cao, Zhiqiang Liang, Genxi Li. Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells. Prot Cell, 2010, 1(9): 842‒846 https://doi.org/10.1007/s13238-010-0110-2

References

[1] Baker, B.R., Lai, R.Y., Wood, M.S., Doctor, E.H., Heeger, A.J., and Plaxco, K.W. (2006). An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128, 3138-3139 .10.1021/ja056957p
[2] Chen, X., Estévez, M.C., Zhu, Z., Huang, Y.F., Chen, Y., Wang, L., and Tan, W. (2009). Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81, 7009-7014 .10.1021/ac9011073
[3] Degefa, T.H., and Kwak, J. (2008). Label-free aptasensor for platelet-derived growth factor (PDGF) protein. Anal Chim Acta 613, 163-168 .10.1016/j.aca.2008.03.010
[4] Ellington, A.D., and Szostak,J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822 .10.1038/346818a0
[5] Espina, V., Geho, D., Mehta, A.I., Petricoin, E.F., Liotta, L.A., and Rosenblatt, K.P. (2005). Pathology of the future: molecular profiling for targeted therapy. Cancer Invest 23, 36-46 .
[6] Famulok, M., Mayer, G., and Blind, M. (2000). Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc Chem Res 33, 591-599 .10.1021/ar960167q
[7] Ghossein, R.A., and Bhattacharya,S. (2000). Molecular detection and characterisation of circulating tumour cells and micrometastases in solid tumours. Eur J Cancer 36, 1681-1694 .10.1016/S0959-8049(00)00152-0
[8] He, F., Shen, Q., Jiang, H., Zhou, J., Cheng, J., Guo, D., Li, Q., Wang, X., Fu, D., and Chen, B. (2009). Rapid identification and high sensitive detection of cancer cells on the gold nanoparticle interface by combined contact angle and electrochemical measurements. Talanta 77, 1009-1014 .10.1016/j.talanta.2008.07.063
[9] Herr, J.K., Smith, J.E., Medley, C.D., Shangguan, D., and Tan, W. (2006). Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78, 2918-2924 .10.1021/ac052015r
[10] Kroemer, G., and Pouyssegur,J.(2008). Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13, 472-482 .10.1016/j.ccr.2008.05.005
[11] Liu, C.W., Huang, C.C., and Chang, H.T. (2009). Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal Chem 81, 2383-2387 .10.1021/ac8022185
[12] Luo, J., Isaacs, W.B., Trent, J.M., and Duggan, D.J. (2003). Looking beyond morphology: cancer gene expression profiling using DNA microarrays. Cancer Invest 21, 937-949 .10.1081/CNV-120025096
[13] Medley, C.D., Smith, J.E., Tang, Z., Wu, Y., Bamrungsap S., and Tan, W. (2008). Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80, 1067-1072 .10.1021/ac702037y
[14] Osborne, S.E., and Ellington, A.D. (1997). Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 97, 349-370 .10.1021/cr960009c
[15] Padgett, J.K., Parlette, H.L. 3rd, and English, J.C. 3rd. (2003). A diagnosis of chronic lymphocytic leukemia prompted by cutaneous lymphocytic infiltrates present in mohs micrographic surgery frozen sections. Dermatol Surg 29, 769-771 .10.1046/j.1524-4725.2003.29194.x
[16] Pan, C., Guo, M., Nie, Z., Xiao, X., and Yao, S. (2009). Aptamer-based electrochemical sensor for label-free recognition and detection of cancer cells. Electroanalysis 21, 1321-1326 .10.1002/elan.200804563
[17] Paredes-Aguilera, R., Romero-Guzman, L., Lopez-Santiago, N., Burbano-Ceron, L., Camacho-Del Monte, O., and Nieto-Martinez, S. (2001). Flow cytometric analysis of cell-surface and intracellular antigens in the diagnosis of acute leukemia. Am J Hematol 68, 69-74 .10.1002/ajh.1155
[18] Pui, C.H., and Evans, W.E. (1998). Acute lymphoblastic leukemia. N Engl J Med 339, 605-615 .10.1056/NEJM199808273390907
[19] Shangguan, D., Li, Y., Tang, Z., Cao, Z.C., Chen, H.W., Mallikaratchy, P., Sefah, K., Yang, C.J., and Tan, W. (2006). Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103, 11838-11843 .10.1073/pnas.0602615103
[20] Shao, N., Wickstrom, E., and Panchapakesan, B. (2008). Nanotube-antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 19, 465101.10.1088/0957-4484/19/46/465101
[21] Smith, J.E., Medley, C.D., Tang, Z., Shangguan, D., Lofton, C., and Tan, W. (2007). Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79, 3075-3082 .10.1021/ac062151b
[22] Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510 .10.1126/science.2200121
[23] Weerkamp, F., Dekking, E., Ng, Y.Y., van der Velden,V.H.J., Wai, H., B?ttcher, S., Brüggemann, M., van der Sluijs, A.J., Koning, A., Boeckx, N., , and the EuroFlow Consortium. (2009). Flow cytometric immunobead assay for the detection of BCR-ABL fusion proteins in leukemia patients. Leukemia 23, 1106-1117 .10.1038/leu.2009.93
[24] Xiao, Y., Piorek, B.D., Plaxco, K.W., and Heeger, A.J. (2005). A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127, 17990-17991 .10.1021/ja056555h
AI Summary AI Mindmap
PDF(237 KB)

Accesses

Citations

Detail

Sections
Recommended

/