Heteromerization of TRP channel subunits: extending functional diversity

Wei Cheng1,2, Changsen Sun1, Jie Zheng2()

PDF(312 KB)
PDF(312 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (9) : 802-810. DOI: 10.1007/s13238-010-0108-9
REVIEW
REVIEW

Heteromerization of TRP channel subunits: extending functional diversity

  • Wei Cheng1,2, Changsen Sun1, Jie Zheng2()
Author information +
History +

Abstract

Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.

Keywords

co-assembly / molecular mechanism / diversification / nonselective cation channel / polymodal receptor / multi-subunit protein complex

Cite this article

Download citation ▾
Wei Cheng, Changsen Sun, Jie Zheng. Heteromerization of TRP channel subunits: extending functional diversity. Prot Cell, 2010, 1(9): 802‒810 https://doi.org/10.1007/s13238-010-0108-9

References

[1] Alessandri-Haber, N., Dina, O.A., Chen, X., and Levine, J.D. (2009). TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29, 6217–6228 .10.1523/JNEUROSCI.0893-09.2009
[2] Arniges, M., Fernández-Fernández, J.M., Albrecht, N., Schaefer, M., and Valverde, M.A. (2006). Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281, 1580–1586 .
[3] Bai, C.X., Giamarchi, A., Rodat-Despoix, L., Padilla, F., Downs, T., Tsiokas, L., and Delmas, P. (2008). Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9, 472–479 .10.1038/embor.2008.29
[4] Bargal, R., Avidan, N., Ben-Asher, E., Olender, Z., Zeigler, M., Frumkin, A., Raas-Rothschild, A., Glusman, G., Lancet, D., and Bach, G. (2000). Identification of the gene causing mucolipidosis type IV. Nat Genet 26, 118–123 .10.1038/79095
[5] Bautista, D.M., Jordt, S.E., Nikai, T., Tsuruda, P.R., Read, A.J., Poblete, J., Yamoah, E.N., Basbaum, A.I., and Julius, D. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 .
[6] Becker, D., Müller, M., Leuner, K., and Jendrach, M. (2008). The C-terminal domain of TRPV4 is essential for plasma membrane localization. Mol Membr Biol 25, 139–151 .10.1080/09687680701635237
[7] Chang, Q., Gyftogianni, E., van de Graaf, S.F., Hoefs, S., Weidema, F.A., Bindels, R.J., and Hoenderop, J.G. (2004). Molecular determinants in TRPV5 channel assembly. J Biol Chem 279, 54304–54311 .10.1074/jbc.M406222200
[8] Cheng, W., Yang, F., Takanishi, C.L., and Zheng, J. (2007). Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129, 191–207 .10.1085/jgp.200709731
[9] Chuang, H.H., Neuhausser, W.M., and Julius, D. (2004). The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869 .10.1016/j.neuron.2004.08.038
[10] Chubanov, V., Mederos y Schnitzler, M., W?ring, J., Plank, A., and Gudermann, T. (2005). Emerging roles of TRPM6/TRPM7 channel kinase signal transduction complexes. Naunyn Schmiedebergs Arch Pharmacol 371, 334–341 .10.1007/s00210-005-1056-4
[11] Chubanov, V., Waldegger, S., Mederos y Schnitzler, M., Vitzthum, H., Sassen, M.C., Seyberth, H.W., Konrad, M., and Gudermann, T. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 101, 2894–2899 .10.1073/pnas.0305252101
[12] Clapham, D.E. (2003). TRP channels as cellular sensors. Nature 426, 517–524 .10.1038/nature02196
[13] Clapham, D.E., Runnels, L.W., and Strübing, C. (2001). The TRP ion channel family. Nat Rev Neurosci 2, 387–396 .10.1038/35077544
[14] Cosens, D.J., and Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285–287 .10.1038/224285a0
[15] Curcio-Morelli, C., Zhang, P., Venugopal, B., Charles, F.A., Browning, M.F., Cantiello, H.F., and Slaugenhaupt, S.A. (2010). Functional multimerization of mucolipin channel proteins. J Cell Physiol 222, 328–335 .10.1002/jcp.21956
[16] Delmas, P. (2005). Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 451, 264–276 .10.1007/s00424-005-1431-5
[17] Delmas, P., Nauli, S.M., Li, X., Coste, B., Osorio, N., Crest, M., Brown, D.A., and Zhou, J. (2004). Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18, 740–742 .
[18] Di Palma, F., Belyantseva, I.A., Kim, H.J., Vogt, T.F., Kachar, B., and Noben-Trauth, K. (2002). Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A 99, 14994–14999 .10.1073/pnas.222425399
[19] Engelke, M., Friedrich, O., Budde, P., Sch?fer, C., Niemann, U., Zitt, C., Jüngling, E., Rocks, O., Lückhoff, A., and Frey, J. (2002). Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta. FEBS Lett 523, 193–199 .10.1016/S0014-5793(02)02971-X
[20] Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V., and Niemeyer, B.A. (2004). Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279, 34456–34463 .10.1074/jbc.M404778200
[21] Feng, S., Okenka, G.M., Bai, C.X., Streets, A.J., Newby, L.J., DeChant, B.T., Tsiokas, L., Obara, T., and Ong, A.C. (2008). Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2. J Biol Chem 283, 28471–28479 .
[22] García-Sanz, N., Fernández-Carvajal, A., Morenilla-Palao, C., Planells-Cases, R., Fajardo-Sánchez, E., Fernández-Ballester, G., and Ferrer-Montiel, A. (2004). Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24, 5307–5314 .
[23] Gaudet, R. (2009). Divide and conquer: high resolution structural information on TRP channel fragments. J Gen Physiol 133, 231–237 .10.1085/jgp.200810137
[24] Gillo, B., Chorna, I., Cohen, H., Cook, B., Manistersky, I., Chorev, M., Arnon, A., Pollock, J.A., Selinger, Z., and Minke, B. (1996). Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc Natl Acad Sci U S A 93, 14146–14151 .10.1073/pnas.93.24.14146
[25] Goel, M., Sinkins, W.G., and Schilling, W.P. (2002). Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277, 48303–48310 .10.1074/jbc.M207882200
[26] Grimm, D.H., Cai, Y., Chauvet, V., Rajendran, V., Zeltner, R., Geng, L., Avner, E.D., Sweeney, W., Somlo, S., and Caplan, M.J. (2003). Polycystin-1 distribution is modulated by polycystin-2 expression in mammalian cells. J Biol Chem 278, 36786–36793 .10.1074/jbc.M306536200
[27] Groves, M.R., and Barford, D. (1999). Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 9, 383–389 .10.1016/S0959-440X(99)80052-9
[28] Gudermann, T., Hofmann, T., Mederos, Y.S.M., and Dietrich, A. (2004). Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258, 103–118 ; discussion 118-122, 155-109, 263-106.
[29] Hanaoka, K., Qian, F., Boletta, A., Bhunia, A.K., Piontek, K., Tsiokas, L., Sukhatme, V.P., Guggino, W.B., and Germino, G.G. (2000). Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990–994 .10.1038/35050128
[30] Hellwig, N., Albrecht, N., Harteneck, C., Schultz, G., and Schaefer, M. (2005). Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118, 917–928 .10.1242/jcs.01675
[31] Hoenderop, J.G., Voets, T., Hoefs, S., Weidema, F., Prenen, J., Nilius, B., and Bindels, R.J. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22, 776–785 .10.1093/emboj/cdg080
[32] Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99, 7461–7466 .10.1073/pnas.102596199
[33] Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M., and Matsunami, H. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103, 12569–12574 .10.1073/pnas.0602702103
[34] Jiang, L.H. (2007). Subunit interaction in channel assembly and functional regulation of transient receptor potential melastatin (TRPM) channels. Biochem Soc Trans 35, 86–88 .10.1042/BST0350086
[35] Jin, X., Touhey, J., and Gaudet, R. (2006). Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281, 25006–25010 .10.1074/jbc.C600153200
[36] Kobori, T., Smith, G.D., Sandford, R., and Edwardson, J.M. (2009). The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2∶2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284, 35507–35513 .10.1074/jbc.M109.060228
[37] K?ttgen, M., Buchholz, B., Garcia-Gonzalez, M.A., Kotsis, F., Fu, X., Doerken, M., Boehlke, C., Steffl, D., Tauber, R., Wegierski, T., . (2008). TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182, 437–447 .10.1083/jcb.200805124
[38] Lepage, P.K., and Boulay, G. (2007). Molecular determinants of TRP channel assembly. Biochem Soc Trans 35, 81–83 .10.1042/BST0350081
[39] Lepage, P.K., Lussier, M.P., Barajas-Martinez, H., Bousquet, S.M., Blanchard, A.P., Francoeur, N., Dumaine, R., and Boulay, G. (2006). Identification of two domains involved in the assembly of transient receptor potential canonical channels. J Biol Chem 281, 30356–30364 .10.1074/jbc.M603930200
[40] Li, M., Jiang, J., and Yue, L. (2006). Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127, 525–537 .10.1085/jgp.200609502
[41] Liapi, A., and Wood, J.N. (2005). Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22, 825–834 .10.1111/j.1460-9568.2005.04270.x
[42] Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W.F., Romanin, C., Zhu, M.X., and Groschner, K. (2000). Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275, 27799–27805 .
[43] Liu, B., Zhang, C., and Qin, F. (2005a). Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 25, 4835–4843 .10.1523/JNEUROSCI.1296-05.2005
[44] Liu, D., and Liman, E.R. (2003). Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100, 15160–15165 .10.1073/pnas.2334159100
[45] Liu, X., Bandyopadhyay, B.C., Singh, B.B., Groschner, K., and Ambudkar, I.S. (2005b). Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280, 21600–21606 .10.1074/jbc.C400492200
[46] LopezJimenez, N.D., Cavenagh, M.M., Sainz, E., Cruz-Ithier, M.A., Battey, J.F., and Sullivan, S.L. (2006). Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 98, 68–77 .10.1111/j.1471-4159.2006.03842.x
[47] McCleverty, C.J., Koesema, E., Patapoutian, A., Lesley, S.A., and Kreusch, A. (2006). Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15, 2201–2206 .10.1110/ps.062357206
[48] Mei, Z.Z., and Jiang, L.H. (2009). Requirement for the N-terminal coiled-coil domain for expression and function, but not subunit interaction of, the ADPR-activated TRPM2 channel. J Membr Biol 230, 93–99 .10.1007/s00232-009-9190-4
[49] Mei, Z.Z., Xia, R., Beech, D.J., and Jiang, L.H. (2006). Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2. J Biol Chem 281, 38748–38756 .10.1074/jbc.M607591200
[50] Mery, L., Strauss, B., Dufour, J.F., Krause, K.H., and Hoth, M. (2002). The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 115, 3497–3508 .
[51] Moiseenkova-Bell, V.Y., and Wensel, T.G. (2009). Hot on the trail of TRP channel structure. J Gen Physiol 133, 239–244 .10.1085/jgp.200810123
[52] Montell, C. (2005). The TRP superfamily of cation channels. Sci STKE 2005, re3.
[53] Murakami, M., Ohba, T., Xu, F., Shida, S., Satoh, E., Ono, K., Miyoshi, I., Watanabe, H., Ito, H., and Iijima, T. (2005). Genomic organization and functional analysis of murine PKD2L1. J Biol Chem 280, 5626–5635 .10.1074/jbc.M411496200
[54] Nilius, B. (2007a). Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull Mem Acad R Med Belg 162, 244–253 .
[55] Nilius, B. (2007b). TRP channels in disease. Biochim Biophys Acta 1772, 805–812 .
[56] Owsianik, G., D’hoedt, D., Voets, T., and Nilius, B. (2006). Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156, 61–90 .10.1007/s10254-005-0006-0
[57] Phelps, C.B., Huang, R.J., Lishko, P.V., Wang, R.R., and Gaudet, R. (2008). Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47, 2476–2484 .10.1021/bi702109w
[58] Plant, T.D., and Schaefer, M. (2003). TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium 33, 441–450 .10.1016/S0143-4160(03)00055-1
[59] Plant, T.D., and Schaefer, M. (2005). Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 371, 266–276 .10.1007/s00210-005-1055-5
[60] Poteser, M., Graziani, A., Rosker, C., Eder, P., Derler, I., Kahr, H., Zhu, M.X., Romanin, C., and Groschner, K. (2006). TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281, 13588–13595 .10.1074/jbc.M512205200
[61] Qian, F., Germino, F.J., Cai, Y., Zhang, X., Somlo, S., and Germino, G.G. (1997). PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16, 179–183 .10.1038/ng0697-179
[62] Reaves, B.J., and Wolstenholme, A.J. (2007). The TRP channel superfamily: insights into how structure, protein-lipid interactions and localization influence function. Biochem Soc Trans 35, 77–80 .10.1042/BST0350077
[63] Riccio, A., Medhurst, A.D., Mattei, C., Kelsell, R.E., Calver, A.R., Randall, A.D., Benham, C.D., and Pangalos, M.N. (2002). mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109, 95–104 .10.1016/S0169-328X(02)00527-2
[64] Rohács, T., Lopes, C.M., Michailidis, I., and Logothetis, D.E. (2005). PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8, 626–634 .10.1038/nn1451
[65] Rutter, A.R., Ma, Q.P., Leveridge, M., and Bonnert, T.P. (2005). Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 16, 1735–1739 .10.1097/01.wnr.0000185958.03841.0f
[66] Salas, M.M., Hargreaves, K.M., and Akopian, A.N. (2009). TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1. Eur J Neurosci 29, 1568–1578 .10.1111/j.1460-9568.2009.06702.x
[67] Schaefer, M. (2005). Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451, 35–42 .10.1007/s00424-005-1467-6
[68] Schindl, R., and Romanin, C. (2007). Assembly domains in TRP channels. Biochem Soc Trans 35, 84–85 .10.1042/BST0350084
[69] Schmidt, M., Dubin, A.E., Petrus, M.J., Earley, T.J., and Patapoutian, A. (2009). Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509 .10.1016/j.neuron.2009.09.030
[70] Sedgwick, S.G., and Smerdon, S.J. (1999). The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24, 311–316 .10.1016/S0968-0004(99)01426-7
[71] Sharif-Naeini, R., Folgering, J.H., Bichet, D., Duprat, F., Lauritzen, I., Arhatte, M., Jodar, M., Dedman, A., Chatelain, F.C., Schulte, U., . (2009). Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596 .
[72] Smith, G.D., Gunthorpe, M.J., Kelsell, R.E., Hayes, P.D., Reilly, P., Facer, P., Wright, J.E., Jerman, J.C., Walhin, J.P., Ooi, L., . (2002). TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 .10.1038/nature00894
[73] Stewart, A.P., Smith, G.D., Sandford, R.N., and Edwardson, J.M. (2010). Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99, 790–797 .10.1016/j.bpj.2010.05.012
[74] Stowers, L., Holy, T.E., Meister, M., Dulac, C., and Koentges, G. (2002). Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 .10.1126/science.1069259
[75] Strübing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D.E. (2001). TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655 .10.1016/S0896-6273(01)00240-9
[76] Strübing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D.E. (2003). Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278, 39014–39019 .10.1074/jbc.M306705200
[77] Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D. (1998). The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 .10.1016/S0896-6273(00)80564-4
[78] Tsiokas, L., Arnould, T., Zhu, C., Kim, E., Walz, G., and Sukhatme, V.P. (1999). Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A 96, 3934–3939 .10.1073/pnas.96.7.3934
[79] Tsiokas, L., Kim, E., Arnould, T., Sukhatme, V.P., and Walz, G. (1997). Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A 94, 6965–6970 .10.1073/pnas.94.13.6965
[80] Tsuruda, P.R., Julius, D., and Minor, D.L. Jr. (2006). Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51, 201–212 .10.1016/j.neuron.2006.06.023
[81] Venkatachalam, K., Hofmann, T., and Montell, C. (2006). Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281, 17517–17527 .10.1074/jbc.M600807200
[82] Vetter, I., Cheng, W., Peiris, M., Wyse, B.D., Roberts-Thomson, S.J., Zheng, J., Monteith, G.R., and Cabot, P.J. (2008). Rapid, opioid-sensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J Biol Chem 283, 19540–19550 .10.1074/jbc.M707865200
[83] Xu, X.Z., Chien, F., Butler, A., Salkoff, L., and Montell, C. (2000). TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26, 647–657 .10.1016/S0896-6273(00)81201-5
[84] Xu, X.Z., Li, H.S., Guggino, W.B., and Montell, C. (1997). Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89, 1155–1164 .
[85] Yu, Y., Ulbrich, M.H., Li, M.H., Buraei, Z., Chen, X.Z., Ong, A.C., Tong, L., Isacoff, E.Y., and Yang, J. (2009). Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106, 11558–11563 .10.1073/pnas.0903684106
[86] Zagranichnaya, T.K., Wu, X., and Villereal, M.L. (2005). Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280, 29559–29569 .10.1074/jbc.M505842200
[87] Zhang, P., Luo, Y., Chasan, B., González-Perrett, S., Montalbetti, N., Timpanaro, G.A., Cantero, M.R., Ramos, A.J., Goldmann, W.H., Zhou, J., . (2009). The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 18, 1238–1251 .10.1093/hmg/ddp024
[88] Zhang, Y., Hoon, M.A., Chandrashekar, J., Mueller, K.L., Cook, B., Wu, D., Zuker, C.S., and Ryba, N.J. (2003). Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 .
[89] Zhong, H., Molday, L.L., Molday, R.S., and Yau, K.W. (2002). The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420, 193–198 .10.1038/nature01201
[90] Zhou, X.L., Batiza, A.F., Loukin, S.H., Palmer, C.P., Kung, C., and Saimi, Y. (2003). The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci U S A 100, 7105–7110 .10.1073/pnas.1230540100
AI Summary AI Mindmap
PDF(312 KB)

Accesses

Citations

Detail

Sections
Recommended

/