Apoptotic regulation and tRNA

Yide Mei1, Aaron Stonestrom1, Ya-Ming Hou2, Xiaolu Yang1()

PDF(182 KB)
PDF(182 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (9) : 795-801. DOI: 10.1007/s13238-010-0107-x
MINI-REVIEW
MINI-REVIEW

Apoptotic regulation and tRNA

  • Yide Mei1, Aaron Stonestrom1, Ya-Ming Hou2, Xiaolu Yang1()
Author information +
History +

Abstract

Apoptotic regulation is critical to organismal homeostasis and protection against many human disease processes such as cancer. Significant research efforts over the past several decades have illuminated many signaling molecules and effecter proteins responsible for this form of programmed cell death. Recent evidence suggests that transfer RNA (tRNA) regulates apoptotic sensitivity at the level of cytochrome c-mediated apoptosome formation. This finding unexpectedly places tRNA at the nexus of cellular biosynthesis and survival. Here we review the current understanding of both the apoptotic machinery and tRNA biology. We describe the evidence linking tRNA and cytochrome c in depth, and speculate on the implications of this link in cell biology.

Keywords

apoptotic regulation / tRNA / cytochrome c

Cite this article

Download citation ▾
Yide Mei, Aaron Stonestrom, Ya-Ming Hou, Xiaolu Yang. Apoptotic regulation and tRNA. Prot Cell, 2010, 1(9): 795‒801 https://doi.org/10.1007/s13238-010-0107-x

References

[1] Acehan, D., Jiang, X., Morgan, D.G., Heuser, J.E., Wang, X., and Akey, C.W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423-432 .10.1016/S1097-2765(02)00442-2
[2] Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326 .10.1126/science.281.5381.1322
[3] Ashkenazi, A., and Dixit, V.M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308 .10.1126/science.281.5381.1305
[4] Bao, Q., Lu, W., Rabinowitz, J.D., and Shi, Y. (2007). Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol Cell 25, 181-192 .10.1016/j.molcel.2006.12.013
[5] Beere, H.M., Wolf, B.B., Cain, K., Mosser, D.D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R.I., Cohen, G.M., and Green, D.R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2, 469-475 .
[6] Boatright, K.M., Renatus, M., Scott, F.L., Sperandio, S., Shin, H., Pedersen, I.M., Ricci, J.E., Edris, W.A., Sutherlin, D.P., Green, D.R., . (2003). A unified model for apical caspase activation. Mol Cell 11, 529-541 .
[7] Bruey, J.M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S.A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A.P., Kroemer, G., Solary, E., . (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2, 645-652 .10.1038/35023595
[8] Cain, K., Langlais, C., Sun, X.M., Brown, D.G., and Cohen, G.M. (2001). Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 276, 41985-41990 .10.1074/jbc.M107419200
[9] Chandra, D., Bratton, S.B., Person, M.D., Tian, Y., Martin, A.G., Ayres, M., Fearnhead, H.O., Gandhi, V., and Tang, D.G. (2006). Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 125, 1333-1346 .
[10] Chang, D.W., Xing, Z., Capacio, V.L., Peter, M.E., and Yang, X. (2003). Interdimer processing mechanism of procaspase-8 activation. EMBO J 22, 4132-4142 .10.1093/emboj/cdg414
[11] Chang, H.Y., and Yang, X. (2000). Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64, 821-846 .10.1128/MMBR.64.4.821-846.2000
[12] Chipuk, J.E., and Green, D.R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18, 157-164 .10.1016/j.tcb.2008.01.007
[13] Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W., Green, P.J., Barton, G.J., and Hutvagner, G. (2009). Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147-2160 .
[14] Costanzi, J., Sidransky, D., Navon, A., and Goldsweig, H. (2005). Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest 23, 643-650 .10.1080/07357900500283143
[15] Crighton, D., Woiwode, A., Zhang, C., Mandavia, N., Morton, J.P., Warnock, L.J., Milner, J., White, R.J., and Johnson, D.L. (2003). p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J 22, 2810-2820 .10.1093/emboj/cdg265
[16] Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241 .
[17] de Bruijn, M.H., and Klug, A. (1983). A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire ‘dihydrouridine’ loop and stem. EMBO J 2, 1309-1321 .
[18] Elbarbary, R.A., Takaku, H., Uchiumi, N., Tamiya, H., Abe, M., Nishida, H., and Nashimoto, M. (2009a). Human cytosolic tRNase ZL can downregulate gene expression through miRNA. FEBS Lett 583, 3241-3246 .10.1016/j.febslet.2009.09.015
[19] Elbarbary, R.A., Takaku, H., Uchiumi, N., Tamiya, H., Abe, M., Takahashi, M., Nishida, H., Nashimoto, M., and Randau, L. (2009b). Modulation of gene expression by human cytosolic tRNase Z(L) through 5'-half-tRNA. PLoS ONE 4, e5908.10.1371/journal.pone.0005908
[20] Gomez-Roman, N., Felton-Edkins, Z.A., Kenneth, N.S., Goodfellow, S.J., Athineos, D., Zhang, J., Ramsbottom, B.A., Innes, F., Kantidakis, T., Kerr, E.R., . (2006). Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem Soc Symp , 141-154 .
[21] Hinnebusch, A.G. (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59, 407-450 .10.1146/annurev.micro.59.031805.133833
[22] Huang, D.C., and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. [In Process Citation] Cell 103, 839-842 .
[23] Iordanov, M.S., Ryabinina, O.P., Wong, J., Dinh, T.H., Newton, D.L., Rybak, S.M., and Magun, B.E. (2000). Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res 60, 1983-1994 .
[24] Jiang, X., Kim, H.E., Shu, H., Zhao, Y., Zhang, H., Kofron, J., Donnelly, J., Burns, D., Ng, S.C., Rosenberg, S., . (2003). Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299, 223-226 .10.1126/science.1076807
[25] Kamhi, E., Raitskin, O., Sperling, R., and Sperling, J. (2010). A potential role for initiator-tRNA in pre-mRNA splicing regulation. Proc Natl Acad Sci U S A 107, 11319-11324 .10.1073/pnas.0911561107
[26] Kim, H.E., Du, F., Fang, M., and Wang, X. (2005). Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A 102, 17545-17550 .10.1073/pnas.0507900102
[27] Kim, H.E., Jiang, X., Du, F., and Wang, X. (2008). PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell 30, 239-247 .10.1016/j.molcel.2008.03.014
[28] Kleiman, L., Jones, C.P., and Musier-Forsyth, K. (2010). Formation of the tRNALys packaging complex in HIV-1. FEBS Lett 584, 359-365 .10.1016/j.febslet.2009.11.038
[29] Larminie, C.G., Sutcliffe, J.E., Tosh, K., Winter, A.G., Felton-Edkins, Z.A., and White, R.J. (1999). Activation of RNA polymerase III transcription in cells transformed by simian virus 40. Mol Cell Biol 19, 4927-4934 .
[30] Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23, 2639-2649 .10.1101/gad.1837609
[31] Li, J., and Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene 27, 6194-6206 .10.1038/onc.2008.297
[32] Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157 .
[33] Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955-964 .10.1093/nar/25.5.955
[34] Marshall, L., Kenneth, N.S., and White, R.J. (2008). Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell 133, 78-89 .
[35] Martin, A.G., and Fearnhead, H.O. (2002). Apocytochrome c blocks caspase-9 activation and Bax-induced apoptosis. J Biol Chem 277, 50834-50841 .10.1074/jbc.M209369200
[36] Mei, Y., Yong, J., Liu, H., Shi, Y., Meinkoth, J., Dreyfuss, G., and Yang, X. (2010). tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37, 668-678 .10.1016/j.molcel.2010.01.023
[37] Mesner, P.W. Jr, Bible, K.C., Martins, L.M., Kottke, T.J., Srinivasula, S.M., Svingen, P.A., Chilcote, T.J., Basi, G.S., Tung, J.S., Krajewski, S., . (1999). Characterization of caspase processing and activation in HL-60 cell cytosol under cell-free conditions. Nucleotide requirement and inhibitor profile. J Biol Chem 274, 22635-22645 .
[38] Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., Srinivasula, S.M., Kumar, V., Weichselbaum, R., Nalin, C., Alnemri, E.S., Kufe, D., . (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19, 4934-4322 .10.1093/emboj/19.16.4310
[39] Pavon-Eternod, M., Gomes, S., Geslain, R., Dai, Q., Rosner, M.R., and Pan, T. (2009). tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37, 7268-7280 .10.1093/nar/gkp787
[40] Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8, 405-413 .10.1038/nrm2153
[41] Ruggero, D., and Pandolfi, P.P. (2003). Does the ribosome translate cancer? Nat Rev Cancer 3, 179-192 .10.1038/nrc1015
[42] Saleh, A., Srinivasula, S.M., Balkir, L., Robbins, P.D., and Alnemri, E.S. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2, 476-483 .
[43] Salvesen, G.S., and Duckett, C.S. (2002). IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3, 401-410 .10.1038/nrm830
[44] Saxena, S.K., Sirdeshmukh, R., Ardelt, W., Mikulski, S.M., Shogen, K., and Youle, R.J. (2002). Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem 277, 15142-15146 .10.1074/jbc.M108115200
[45] Schwickart, M., Huang, X., Lill, J.R., Liu, J., Ferrando, R., French, D.M., Maecker, H., O’Rourke, K., Bazan, F., Eastham-Anderson, J., . (2010). Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463, 103-107 .10.1038/nature08646
[46] Shaheen, H.H., Horetsky, R.L., Kimball, S.R., Murthi, A., Jefferson, L.S., and Hopper, A.K. (2007). Retrograde nuclear accumulation of cytoplasmic tRNA in rat hepatoma cells in response to amino acid deprivation. Proc Natl Acad Sci U S A 104, 8845-8850 .
[47] Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J.G., Gerald, W.L., Lazebnik, Y.A., . (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207-211 .10.1038/35051606
[48] Suhasini, A.N., and Sirdeshmukh, R. (2006). Transfer RNA cleavages by onconase reveal unusual cleavage sites. J Biol Chem 281, 12201-12209 .10.1074/jbc.M504488200
[49] Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462 .10.1126/science.7878464
[50] Thompson, D.M., Lu, C., Green, P.J., and Parker, R. (2008). tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095-2103 .
[51] Thompson, D.M., and Parker, R. (2009a). The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185, 43-50 .10.1083/jcb.200811119
[52] Thompson, D.M., and Parker, R. (2009b). Stressing out over tRNA cleavage. Cell 138, 215-219 .
[53] Vaughn, A.E., and Deshmukh, M. (2008). Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 10, 1477-1483 .10.1038/ncb1807
[54] Vaux, D.L., and Korsmeyer, S.J. (1999). Cell death in development. Cell 96, 245-254 .
[55] Vousden, K.H., and Lane, D.P. (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8, 275-283 .10.1038/nrm2147
[56] Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407 .10.1146/annurev.genet.39.110304.095751
[57] Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922-2933 .
[58] Watanabe, Y., Kawai, G., Yokogawa, T., Hayashi, N., Kumazawa, Y., Ueda, T., Nishikawa, K., Hirao, I., Miura, K., and Watanabe, K. (1994). Higher-order structure of bovine mitochondrial tRNA(SerUGA): chemical modification and computer modeling. Nucleic Acids Res 22, 5378-5384 .10.1093/nar/22.24.5378
[59] White, R.J. (2004). RNA polymerase III transcription and cancer. Oncogene 23, 3208-3216 .10.1038/sj.onc.1207547
[60] White, R.J. (2005). RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 6, 69-78 .10.1038/nrm1551
[61] Yamasaki, S., Ivanov, P., Hu, G.F., and Anderson, P. (2009). Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185, 35-42 .10.1083/jcb.200811106
[62] Yang, X., Chang, H.Y., and Baltimore, D. (1998). Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1, 319-325 .10.1016/S1097-2765(00)80032-5
[63] Yue, D., Maizels, N., and Weiner, A.M. (1996). CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA 2, 895-908 .
[64] Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413 .
AI Summary AI Mindmap
PDF(182 KB)

Accesses

Citations

Detail

Sections
Recommended

/