Snapshots of a hybrid transcription factor in the Hippo pathway

Xuelian Luo()

PDF(528 KB)
PDF(528 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (9) : 811-819. DOI: 10.1007/s13238-010-0105-z
REVIEW
REVIEW

Snapshots of a hybrid transcription factor in the Hippo pathway

  • Xuelian Luo()
Author information +
History +

Abstract

The Hippo pathway plays key roles in animal development. It suppresses tumorigenesis by controlling the transcription of the target genes that are critical for cell proliferation and apoptosis. The transcriptional coactivator YAP is the major downstream effector of the Hippo signaling. Upon extracellular stimulation, a kinase cascade in the Hippo pathway phosphorylates YAP and promotes its cytoplasmic sequestration by 14-3-3 and ubiquitin-dependent degradation. When the Hippo pathway is turned off, YAP (which lacks a DNA-binding domain) is dephosphorylated and translocates to the nucleus, where it associates with the transcription factor TEAD to form a functional heterodimeric transcription factor and to promote the expression of the Hippo-responsive genes. Recently, structures of the YAP-binding domain of TEAD alone or in complex with YAP have revealed the atomic details of the TEAD-YAP interaction. Here, I review these exciting advances, propose a strategy for targeting the TEAD-YAP interaction using small molecules, and suggest potential mechanisms by which phosphorylation and 14-3-3 binding regulate the cytoplasmic retention of YAP.

Keywords

Hippo / TEAD / YAP / structure / phosphorylation / cancer

Cite this article

Download citation ▾
Xuelian Luo. Snapshots of a hybrid transcription factor in the Hippo pathway. Prot Cell, 2010, 1(9): 811‒819 https://doi.org/10.1007/s13238-010-0105-z

References

[1] Alarcón, C., Zaromytidou, A.I., Xi, Q., Gao, S., Yu, J., Fujisawa, S., Barlas, A., Miller, A.N., Manova-Todorova, K., Macias, M.J., . (2009). Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139, 757–769 .
[2] Anbanandam, A., Albarado, D.C., Nguyen, C.T., Halder, G., Gao, X., and Veeraraghavan, S. (2006). Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci USA 103, 17225–17230 .10.1073/pnas.0607171103
[3] Asthagiri, A.R., Parry, D.M., Butman, J.A., Kim, H.J., Tsilou, E.T., Zhuang, Z., and Lonser, R.R. (2009). Neurofibromatosis type 2. Lancet 373, 1974–1986 .10.1016/S0140-6736(09)60259-2
[4] Badouel, C., Garg, A., and McNeill, H. (2009). Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol 21, 837–843 .10.1016/j.ceb.2009.09.010
[5] Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E., and Stocker, H. (2010). The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 18, 309–316 .10.1016/j.devcel.2009.12.013
[6] Cao, X., Pfaff, S.L., and Gage, F.H. (2008). YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 22, 3320–3334 .10.1101/gad.1726608
[7] Chen, L., Chan, S.W., Zhang, X., Walsh, M., Lim, C.J., Hong, W., and Song, H. (2010). Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 24, 290–300 .10.1101/gad.1865310
[8] Couture, J.F., Collazo, E., Ortiz-Tello, P.A., Brunzelle, J.S., and Trievel, R.C. (2007). Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol 14, 689–695 .10.1038/nsmb1273
[9] Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 .
[10] Edgar, B.A. (2006). From cell structure to transcription: Hippo forges a new path. Cell 124, 267–273 .
[11] Genevet, A., Wehr, M.C., Brain, R., Thompson, B.J., and Tapon, N. (2010). Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18, 300–308 .10.1016/j.devcel.2009.12.011
[12] Grusche, F.A., Richardson, H.E., and Harvey, K.F. (2010). Upstream regulation of the hippo size control pathway. Curr Biol 20, R574–R582 .10.1016/j.cub.2010.05.023
[13] Grzeschik, N.A., Parsons, L.M., Allott, M.L., Harvey, K.F., and Richardson, H.E. (2010). Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20, 573–581 .10.1016/j.cub.2010.01.055
[14] Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496–5509 .10.1074/jbc.M709037200
[15] Harvey, K., and Tapon, N. (2007). The Salvador-Warts-Hippo pathway- an emerging tumour-suppressor network. Nat Rev Cancer 7, 182–191 .10.1038/nrc2070
[16] Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 .
[17] Hisaoka, M., Tanaka, A., and Hashimoto, H. (2002). Molecular alterations of h-warts/LATS1 tumor suppressor in human soft tissue sarcoma. Lab Invest 82, 1427–1435 .
[18] Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434 .
[19] Jiménez-Velasco, A., Román-Gómez, J., Agirre, X., Barrios, M., Navarro, G., Vázquez, I., Prósper, F., Torres, A., and Heiniger, A. (2005). Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia 19, 2347–2350 .10.1038/sj.leu.2403974
[20] Justice, R.W., Zilian, O., Woods, D.F., Noll, M., and Bryant, P.J. (1995). The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9, 534–546 .10.1101/gad.9.5.534
[21] Kango-Singh, M., Nolo, R., Tao, C., Verstreken, P., Hiesinger, P.R., Bellen, H.J., and Halder, G. (2002). Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730 .10.1242/dev.00168
[22] Kitagawa, M. (2007). A Sveinsson’s chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ. Biochem Biophys Res Commun 361, 1022–1026 .10.1016/j.bbrc.2007.07.129
[23] Kosaka, Y., Mimori, K., Tanaka, F., Inoue, H., Watanabe, M., and Mori, M. (2007). Clinical significance of the loss of MATS1 mRNA expression in colorectal cancer. Int J Oncol 31, 333–338 .
[24] Lai, Z.C., Wei, X., Shimizu, T., Ramos, E., Rohrbaugh, M., Nikolaidis, N., Ho, L.L., and Li, Y. (2005). Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675–685 .
[25] Li, Z., Zhao, B., Wang, P., Chen, F., Dong, Z., Yang, H., Guan, K.L., and Xu, Y. (2010). Structural insights into the YAP and TEAD complex. Genes Dev 24, 235–240 .10.1101/gad.1865810
[26] Ling, C., Zheng, Y., Yin, F., Yu, J., Huang, J., Hong, Y., Wu, S., and Pan, D. (2010). The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci USA 107, 10532–10537 .10.1073/pnas.1004279107
[27] Liu, A.M., Xu, M.Z., Chen, J., Poon, R.T., and Luk, J.M. (2010). Targeting YAP and Hippo signaling pathway in liver cancer. Expert Opin Ther Targets 14, 855–868 .10.1517/14728222.2010.499361
[28] Macias, M.J., Hyv?nen, M., Baraldi, E., Schultz, J., Sudol, M., Saraste, M., and Oschkinat, H. (1996). Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382, 646–649 .10.1038/382646a0
[29] Minoo, P., Zlobec, I., Baker, K., Tornillo, L., Terracciano, L., Jass, J.R., and Lugli, A. (2007). Prognostic significance of mammalian sterile20-like kinase 1 in colorectal cancer. Mod Pathol 20, 331–338 .10.1038/modpathol.3800740
[30] Nolo, R., Morrison, C.M., Tao, C., Zhang, X., and Halder, G. (2006). The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16, 1895–1904 .
[31] Oh, H., and Irvine, K.D. (2008). In vivo regulation of Yorkie phosphorylation and localization. Development 135, 1081–1088 .10.1242/dev.015255
[32] Oh, H., and Irvine, K.D. (2009). In vivo analysis of Yorkie phosphorylation sites. Oncogene 28, 1916–1927 .10.1038/onc.2009.43
[33] Oh, H., and Irvine, K.D. (2010). Yorkie: the final destination of Hippo signaling. Trends Cell Biol 20, 410–417 .10.1016/j.tcb.2010.04.005
[34] Oka, T., Mazack, V., and Sudol, M. (2008). Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem 283, 27534–27546 .10.1074/jbc.M804380200
[35] Ota, M., and Sasaki, H. (2008). Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059–4069 .10.1242/dev.027151
[36] Overholtzer, M., Zhang, J., Smolen, G.A., Muir, B., Li, W., Sgroi, D.C., Deng, C.X., Brugge, J.S., and Haber, D.A. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103, 12405–12410 .10.1073/pnas.0605579103
[37] Pan, D. (2007). Hippo signaling in organ size control. Genes Dev 21, 886–897 .10.1101/gad.1536007
[38] Reddy, B.V., and Irvine, K.D. (2008). The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 135, 2827–2838 .10.1242/dev.020974
[39] Ren, F., Zhang, L., and Jiang, J. (2010). Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol 337, 303–312 .10.1016/j.ydbio.2009.10.046
[40] Robinson, B.S., Huang, J., Hong, Y., and Moberg, K.H. (2010). Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20, 582–590 .10.1016/j.cub.2010.03.019
[41] Seidel, C., Schagdarsurengin, U., Blümke, K., Würl, P., Pfeifer, G.P., Hauptmann, S., Taubert, H., and Dammann, R. (2007). Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol Carcinog 46, 865–871 .10.1002/mc.20317
[42] Steinhardt, A.A., Gayyed, M.F., Klein, A.P., Dong, J., Maitra, A., Pan, D., Montgomery, E.A., and Anders, R.A. (2008). Expression of Yes-associated protein in common solid tumors. Hum Pathol 39, 1582–1589 .10.1016/j.humpath.2008.04.012
[43] Takahashi, Y., Miyoshi, Y., Takahata, C., Irahara, N., Taguchi, T., Tamaki, Y., and Noguchi, S. (2005). Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11, 1380–1385 .10.1158/1078-0432.CCR-04-1773
[44] Tao, W., Zhang, S., Turenchalk, G.S., Stewart, R.A., St John, M.A., Chen, W., and Xu, T. (1999). Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat Genet 21, 177–181 .10.1038/5960
[45] Tapon, N., Harvey, K.F., Bell, D.W., Wahrer, D.C., Schiripo, T.A., Haber, D.A., and Hariharan, I.K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 .
[46] Thompson, B.J., and Cohen, S.M. (2006). The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 .
[47] Tian, W., Yu, J., Tomchick, D.R., Pan, D., and Luo, X. (2010). Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci USA 107, 7293–7298 .10.1073/pnas.1000293107
[48] Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B.M., Dembowy, J., Yaffe, M.B., Zandstra, P.W., and Wrana, J.L. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10, 837–848 .10.1038/ncb1748
[49] Wu, S., Huang, J., Dong, J., and Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 .
[50] Wu, S., Liu, Y., Zheng, Y., Dong, J., and Pan, D. (2008). The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14, 388–398 .10.1016/j.devcel.2008.01.007
[51] Xu, T., Wang, W., Zhang, S., Stewart, R.A., and Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 .
[52] Yaffe, M.B. (2002). How do 14-3-3 proteins work?— Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513, 53–57 .10.1016/S0014-5793(01)03288-4
[53] Yu, J., Zheng, Y., Dong, J., Klusza, S., Deng, W.M., and Pan, D. (2010). Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18, 288–299 .10.1016/j.devcel.2009.12.012
[54] Zender, L., Spector, M.S., Xue, W., Flemming, P., Cordon-Cardo, C., Silke, J., Fan, S.T., Luk, J.M., Wigler, M., Hannon, G.J., . (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 .
[55] Zeng, Q., and Hong, W. (2008). The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13, 188–192 .10.1016/j.ccr.2008.02.011
[56] Zhang, J., Ji, J.Y., Yu, M., Overholtzer, M., Smolen, G.A., Wang, R., Brugge, J.S., Dyson, N.J., and Haber, D.A. (2009a). YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11, 1444–1450 .10.1038/ncb1993
[57] Zhang, L., Yue, T., and Jiang, J. (2009b). Hippo signaling pathway and organ size control. Fly (Austin) 3, 68–73 .10.4161/fly.3.1.7788
[58] Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., . (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747–2761 .10.1101/gad.1602907
[59] Zhao, B., Lei, Q.Y., and Guan, K.L. (2008a). The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol 20, 638–646 .10.1016/j.ceb.2008.10.001
[60] Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., . (2008b). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962–1971 .10.1016/j.ceb.2008.10.001
[61] Zhao, B., Kim, J., Ye, X., Lai, Z.C., and Guan, K.L. (2009). Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res 69, 1089–1098 .10.1158/0008-5472.CAN-08-2997
[62] Zhao, B., Li, L., Lei, Q., and Guan, K.L. (2010a). The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24, 862–874 .10.1101/gad.1909210
[63] Zhao, B., Li, L., Tumaneng, K., Wang, C.Y., and Guan, K.L. (2010b). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP).Genes Dev 24, 72–85 .10.1101/gad.1843810
AI Summary AI Mindmap
PDF(528 KB)

Accesses

Citations

Detail

Sections
Recommended

/