[1] Allfrey, V.G., and Mirsky, A.E. (1964). Structural modifications of histones and their possible role in the regulation of RNA synthesis.
Science 144, 559.
10.1126/science.144.3618.559[2] Allis, C.D., Jenuwein, T., and Reinberg, D. (2006). Overviews and concepts. In Epigenetics, C.D. Allis, T. Jenuwein and D. Reinberg, ed. (
New York, USA:
Higher Education Press and Springer-Verlag). pp. 23–56 .
[3] Annunziato, A.T. (2005). Split decision: what happens to nucleosomes during DNA replication?
J Biol Chem 280, 12065–12068 .
10.1074/jbc.R400039200[4] Annunziato, A.T., and Seale, R.L. (1984). Presence of nucleosomes within irregularly cleaved fragments of newly replicated chromatin.
Nucleic Acids Res 12, 6179–6196 .
10.1093/nar/12.15.6179[5] Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.
Nature 410, 120–124 .
10.1038/35065138[6] Barman, H.K., Takami, Y., Ono, T., Nishijima, H., Sanematsu, F., Shibahara, K., and Nakayama, T. (2006). Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells.
Biochem Biophys Res Commun 345, 1547–1557 .
10.1016/j.bbrc.2006.05.079[7] Belotserkovskaya, R., Oh, S., Bondarenko, V.A., Orphanides, G., Studitsky, V.M., and Reinberg, D. (2003). FACT facilitates transcription-dependent nucleosome alteration.
Science 301, 1090–1093 .
10.1126/science.1085703[8] Benson, L.J., Gu, Y., Yakovleva, T., Tong, K., Barrows, C., Strack, C.L., Cook, R.G., Mizzen, C.A., and Annunziato, A.T. (2006). Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange.
J Biol Chem 281, 9287–9296 .
10.1074/jbc.M512956200[9] Bonne-Andrea, C., Wong, M.L., and Alberts, B.M. (1990). In vitro replication through nucleosomes without histone displacement.
Nature 343, 719–726 .
10.1038/343719a0[10] Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., and Allis, C.D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation.
Cell 84, 843–851 .
10.1016/S0092-8674(00)81063-6[11] Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G., and Li, B.F. (1997). Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1.
Science 277, 1996–2000 .
10.1126/science.277.5334.1996[12] Collins, N., Poot, R.A., Kukimoto, I., García-Jiménez, C., Dellaire, G., and Varga-Weisz, P.D. (2002). An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin.
Nat Genet 32, 627–632 .
10.1038/ng1046[13] Cusick, M.E., Herman, T.M., DePamphilis, M.L., and Wassarman, P.M. (1981). Structure of chromatin at deoxyribonucleic acid replication forks: prenucleosomal deoxyribonucleic acid is rapidly excised from replicating simian virus 40 chromosomes by micrococcal nuclease.
Biochemistry 20, 6648–6658 .
10.1021/bi00526a020[14] Cusick, M.E., DePamphilis, M.L., and Wassarman, P.M. (1984). Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes.
J Mol Biol 178, 249–271 .
10.1016/0022-2836(84)90143-8[15] Das, C., Lucia, M.S., Hansen, K.C., and Tyler, J.K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56.
Nature 459, 113–117 .
10.1038/nature07861[16] Eissenberg, J.C. (2006). Divided loyalties: transdetermination and the genetics of tissue regeneration.
Bioessays 28, 574–577 .
10.1002/bies.20410[17] Eissenberg, J.C., James, T.C., Foster-Hartnett, D.M., Hartnett, T., Ngan, V., and Elgin, S.C. (1990). Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster.
Proc Natl Acad Sci U S A 87, 9923–9927 .
10.1073/pnas.87.24.9923[18] English, C.M., Maluf, N.K., Tripet, B., Churchill, M.E., and Tyler, J.K. (2005). ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA.
Biochemistry 44, 13673–13682 .
10.1021/bi051333h[19] Enomoto, S., and Berman, J. (1998). Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci.
Genes Dev 12, 219–232 .
10.1101/gad.12.2.219[20] Enomoto, S., McCune-Zierath, P.D., Gerami-Nejad, M., Sanders, M.A., and Berman, J. (1997). RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo.
Genes Dev 11, 358–370 .
10.1101/gad.11.3.358[21] Espada, J., Ballestar, E., Fraga, M.F., Villar-Garea, A., Juarranz, A., Stockert, J.C., Robertson, K.D., Fuks, F., and Esteller, M. (2004). Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern.
J Biol Chem 279, 37175–37184 .
10.1074/jbc.M404842200[22] Estève, P.O., Chin, H.G., Smallwood, A., Feehery, G.R., Gangisetty, O., Karpf, A.R., Carey, M.F., and Pradhan, S. (2006). Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication.
Genes Dev 20, 3089–3103 .
10.1101/gad.1463706[23] Fotedar, R., and Roberts, J.M. (1989). Multistep pathway for replication-dependent nucleosome assembly.
Proc Natl Acad Sci U S A 86, 6459–6463 .
10.1073/pnas.86.17.6459[24] Fowler, E., Farb, R., and El-Saidy, S. (1982). Distribution of the core histones H2A.H2B.H3 and H4 during cell replication.
Nucleic Acids Res 10, 735–748 .
10.1093/nar/10.2.735[25] Franco, A.A., Lam, W.M., Burgers, P.M., and Kaufman, P.D. (2005). Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C.
Genes Dev 19, 1365–1375 .
10.1101/gad.1305005[26] Gambus, A., Jones, R.C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R.D., and Labib, K. (2006). GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks.
Nat Cell Biol 8, 358–366 .
10.1038/ncb1382[27] Gasser, R., Koller, T., and Sogo, J.M. (1996). The stability of nucleosomes at the replication fork.
J Mol Biol 258, 224–239 .
10.1006/jmbi.1996.0245[28] Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007). Chromatin challenges during DNA replication and repair.
Cell 128, 721–733 .
10.1016/j.cell.2007.01.030[29] Groth, A., Corpet, A., Cook, A.J., Roche, D., Bartek, J., Lukas, J., and Almouzni, G. (2007). Regulation of replication fork progression through histone supply and demand.
Science 318, 1928–1931 .
[30] Gruss, C., Wu, J., Koller, T., Sogo, J.M. (1993). Disruption of the nucleosomes at the replication fork.
EMBO J 12, 4533–4545 .
[31] Hadorn, E. (1968). Transdetermination in cells.
Sci Am 219, 110–120 , passim.
10.1038/scientificamerican1168-110[32] Hake, S.B., and Allis, C.D. (2006). Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”.
Proc Natl Acad Sci U S A 103, 6428–6435 .
10.1073/pnas.0600803103[33] Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R.M., and Zhang, Z. (2007). Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication.
Science 315, 653–655 .
10.1126/science.1133234[34] Hansen, K.H., Bracken, A.P., Pasini, D., Dietrich, N., Gehani, S.S., Monrad, A., Rappsilber, J., Lerdrup, M., and Helin, K. (2008). A model for transmission of the H3K27me3 epigenetic mark.
Nat Cell Biol 10, 1291–1300 .
10.1038/ncb1787[35] Henderson, D.S., Banga, S.S., Grigliatti, T.A., and Boyd, J.B. (1994). Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA.
EMBO J 13, 1450–1459 .
[36] Henikoff, S., and Ahmad, K. (2005). Assembly of variant histones into chromatin.
Annu Rev Cell Dev Biol 21, 133–153 .
10.1146/annurev.cellbio.21.012704.133518[37] Henikoff, S., Furuyama, T., and Ahmad, K. (2004). Histone variants, nucleosome assembly and epigenetic inheritance.
Trends Genet 20, 320–326 .
10.1016/j.tig.2004.05.004[38] Hertel, L., De Andrea, M., Bellomo, G., Santoro, P., Landolfo, S., and Gariglio, M. (1999). The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation.
Exp Cell Res 250, 313–328 .
10.1006/excr.1999.4495[39] Hoek, M., and Stillman, B. (2003). Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication
in vivo.
Proc Natl Acad Sci U S A 100, 12183–12188 .
10.1073/pnas.1635158100[40] Huen, M.S., Sy, S.M., van Deursen, J.M., and Chen, J. (2008). Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication.
J Biol Chem 283, 11073–11077 .
10.1074/jbc.C700242200[41] Jackson, V. (1987). Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new histones H3 and H4.
Biochemistry 26, 2315–2325 .
10.1021/bi00382a037[42] Jackson, V. (1990). In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both.
Biochemistry 29, 719–731 .
10.1021/bi00455a019[43] Jackson, V., and Chalkley, R. (1985). Histone segregation on replicating chromatin.
Biochemistry 24, 6930–6938 .
10.1021/bi00345a027[44] Jasencakova, Z., Scharf, A.N., Ask, K., Corpet, A., Imhof, A., Almouzni, G., and Groth, A. (2010). Replication stress interferes with histone recycling and predeposition marking of new histones.
Mol Cell 37, 736–743 .
10.1016/j.molcel.2010.01.033[45] Jenuwein, T., and Allis, C.D. (2001). Translating the histone code.
Science 293, 1074–1080 .
10.1126/science.1063127[46] J?rgensen, S., Elvers, I., Trelle, M.B., Menzel, T., Eskildsen, M., Jensen, O.N., Helleday, T., Helin, K., and S?rensen, C.S. (2007). The histone methyltransferase SET8 is required for S-phase progression.
J Cell Biol 179, 1337–1345 .
10.1083/jcb.200706150[47] Kaufman, P.D., Kobayashi, R., Kessler, N., and Stillman, B. (1995). The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication.
Cell 81, 1105–1114 .
10.1016/S0092-8674(05)80015-7[48] Kaufman, P.D., Kobayashi, R., and Stillman, B. (1997). Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I.
Genes Dev 11, 345–357 .
10.1101/gad.11.3.345[49] Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B., and Araki, T. (2001). FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems.
Cell 104, 131–142 .
10.1016/S0092-8674(01)00197-0[50] Kornberg, R.D., and Thomas, J.O. (1974). Chromatin structure; oligomers of the histones.
Science 184, 865–868 .
10.1126/science.184.4139.865[51] Krude, T., and Knippers, R. (1991). Transfer of nucleosomes from parental to replicated chromatin.
Mol Cell Biol 11, 6257–6267 .
[52] Lachner M., O'Carroll, D., Rea, S., Mechtler, K., Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.
Nature 410, 116–120 .
10.1038/35065132[53] Leonhardt, H., Page, A.W., Weier, H.U., and Bestor, T.H. (1992). A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei.
Cell 71, 865–873 .
10.1016/0092-8674(92)90561-P[54] LeRoy, G., Orphanides, G., Lane, W.S., and Reinberg, D. (1998). Requirement of RSF and FACT for transcription of chromatin templates in vitro.
Science 282, 1900–1904 .
10.1126/science.282.5395.1900[55] Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008). Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly.
Cell 134, 244–255 .
10.1016/j.cell.2008.06.018[56] Luger, K., M?der, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution.
Nature 389, 251–260 .
10.1038/38444[57] Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury, W.J. 3rd, Voigt, P., Martin, S.R., Taylor, W.R., De Marco, V.,
. (2009). Role of the polycomb protein EED in the propagation of repressive histone marks.
Nature 461, 762–767 .
10.1038/nature08398[58] Martin, C., and Zhang, Y. (2007). Mechanisms of epigenetic inheritance.
Curr Opin Cell Biol 19, 266–272 .
10.1016/j.ceb.2007.04.002[59] Marzluff, W.F., Wagner, E.J., and Duronio, R.J. (2008). Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail.
Nat Rev Genet 9, 843–854 .
10.1038/nrg2438[60] Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response.
Nature 436, 294–298 .
10.1038/nature03714[61] McKnight, S.L., and Miller, O.L. Jr. (1977). Electron microscopic analysis of chromatin replication in the cellular blastoderm
Drosophila melanogaster embryo.
Cell 12, 795–804 .
10.1016/0092-8674(77)90278-1[62] Meijsing, S.H., and Ehrenhofer-Murray, A.E. (2001). The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in
Saccharomyces cerevisiae.
Genes Dev 15, 3169–3182 .
10.1101/gad.929001[63] Milutinovic, S., Zhuang, Q., and Szyf, M. (2002). Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification.
J Biol Chem 277, 20974–20978 .
10.1074/jbc.M202504200[64] Moggs, J.G., Grandi, P., Quivy, J.P., Jónsson, Z.O., Hübscher, U., Becker, P.B., and Almouzni, G. (2000). A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage.
Mol Cell Biol 20, 1206–1218 .
10.1128/MCB.20.4.1206-1218.2000[65] Monson, E.K., de Bruin, D., and Zakian, V.A. (1997). The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres.
Proc Natl Acad Sci U S A 94, 13081–13086 .
10.1073/pnas.94.24.13081[66] Mosammaparast, N., and Shi, Y. (2010). Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases.
Annu Rev Biochem 79, 155–179 .
10.1146/annurev.biochem.78.070907.103946[67] Nabatiyan, A., and Krude, T. (2004). Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis.
Mol Cell Biol 24, 2853–2862 .
10.1128/MCB.24.7.2853-2862.2004[68] Nakatani, Y., Ray-Gallet, D., Quivy, J.P., Tagami, H., and Almouzni, G. (2004). Two distinct nucleosome assembly pathways: dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes.
Cold Spring Harb Symp Quant Biol 69, 273–280 .
10.1101/sqb.2004.69.273[69] Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly.
Science 292, 110–113 .
10.1126/science.1060118[70] Natsume, R., Eitoku, M., Akai, Y., Sano, N., Horikoshi, M., and Senda, T. (2007). Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.
Nature 446, 338–341 .
10.1038/nature05613[71] Neumann, H., Hancock, S.M., Buning, R., Routh, A., Chapman, L., Somers, J., Owen-Hughes, T., van Noort, J., Rhodes, D., and Chin, J.W. (2009). A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation.
Mol Cell 36, 153–163 .
10.1016/j.molcel.2009.07.027[72] Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S., and Reinberg, D. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes.
Cell 92, 105–116 .
10.1016/S0092-8674(00)80903-4[73] Papamichos-Chronakis, M., and Peterson, C.L. (2008). The Ino80 chromatin-remodeling enzyme regulates replisome function and stability.
Nat Struct Mol Biol 15, 338–345 .
10.1038/nsmb.1413[74] Paul, J., and Gilmour, R.S. (1968). Organ-specific restriction of transcription in mammalian chromatin.
J Mol Biol 34, 305–316 .
10.1016/0022-2836(68)90255-6[75] Pesavento, J.J., Yang, H., Kelleher, N.L., and Mizzen, C.A. (2008). Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle.
Mol Cell Biol 28, 468–486 .
10.1128/MCB.01517-07[76] Peters, A.H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Sch?fer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A.,
. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability.
Cell , 107, 323–337 .
10.1016/S0092-8674(01)00542-6[77] Poot, R.A., Bozhenok, L., van den Berg, D.L., Steffensen, S., Ferreira, F., Grimaldi, M., Gilbert, N., Ferreira, J., and Varga-Weisz, P.D. (2004). The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci.
Nat Cell Biol 6, 1236–1244 .
10.1038/ncb1196[78] Pospelov, V., Russev, G., Vassilev, L., and Tsanev, R. (1982). Nucleosome segregation in chromatin replicated in the presence of cycloheximide.
J Mol Biol 156, 79–91 .
10.1016/0022-2836(82)90460-0[79] Prior, C.P., Cantor, C.R., Johnson, E.M., and Allfrey, V.G. (1980). Incorporation of exogenous pyrene-labeled histone into
Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo.
Cell 20, 597–608 .
10.1016/0092-8674(80)90306-2[80] Probst, A.V., Dunleavy, E., and Almouzni, G. (2009). Epigenetic inheritance during the cell cycle.
Nat Rev Mol Cell Biol 10, 192–206 .
10.1038/nrm2640[81] Randall, S.K., and Kelly, T.J. (1992). The fate of parental nucleosomes during SV40 DNA replication.
J Biol Chem 267, 14259–14265 .
[82] Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D.,
. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases.
Nature 406, 593–599 .
10.1038/35020506[83] Recht, J., Tsubota, T., Tanny, J.C., Diaz, R.L., Berger, J.M., Zhang, X., Garcia, B.A., Shabanowitz, J., Burlingame, A.L., Hunt, D.F.,
. (2006). Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis.
Proc Natl Acad Sci U S A 103, 6988–6993 .
10.1073/pnas.0601676103[84] Reese, B.E., Bachman, K.E., Baylin, S.B., and Rountree, M.R. (2003). The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1.
Mol Cell Biol 23, 3226–3236 .
10.1128/MCB.23.9.3226-3236.2003[85] Riley, D., and Weintraub, H. (1979). Conservative segregation of parental histones during replication in the presence of cycloheximide.
Proc Natl Acad Sci U S A 76, 328–332 .
10.1073/pnas.76.1.328[86] Sarraf, S.A., and Stancheva, I. (2004). Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly.
Mol Cell 15, 595–605 .
10.1016/j.molcel.2004.06.043[87] Scharf, A.N., Barth, T.K., and Imhof, A. (2009). Establishment of histone modifications after chromatin assembly.
Nucleic Acids Res 37, 5032–5040 .
10.1093/nar/gkp518[88] Schlesinger, M.B., and Formosa, T. (2000). POB3 is required for both transcription and replication in the yeast
Saccharomyces cerevisiae.
Genetics 155, 1593–1606 .
[89] Schotta, G., Ebert, A., Krauss, V., Fischer, A., Hoffmann, J., Rea, S., Jenuwein, T., Dorn, R., and Reuter, G. (2002). Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing.
EMBO J 21, 1121–1131 .
10.1093/emboj/21.5.1121[90] Schulz, L.L., and Tyler, J.K. (2006). The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication.
FASEB J 20, 488–490 .
[91] Schwartz, Y.B., and Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes.
Nat Rev Genet 8, 9–22 .
10.1038/nrg1981[92] Seale, R.L. (1976). Studies on the mode of segregation of histone nu bodies during replication in HeLa cells.
Cell 9, 423–429 .
10.1016/0092-8674(76)90087-8[93] Seidman, M.M., Levine, A.J., and Weintraub, H. (1979). The asymmetric segregation of parental nucleosomes during chrosome replication.
Cell 18, 439–449 .
10.1016/0092-8674(79)90063-1[94] Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation.
Annu Rev Biochem 76, 75–100 .
10.1146/annurev.biochem.76.052705.162114[95] Shibahara, K., and Stillman, B. (1999). Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin.
Cell 96, 575–585 .
10.1016/S0092-8674(00)80661-3[96] Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression.
Annu Rev Biochem 75, 243–269 .
10.1146/annurev.biochem.75.103004.142422[97] Smith, S., and Stillman, B. (1989). Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro.
Cell 58, 15–25 .
10.1016/0092-8674(89)90398-X[98] Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T., and Allis, C.D. (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4.
Proc Natl Acad Sci U S A 92, 1237–1241 .
10.1073/pnas.92.4.1237[99] Sogo, J.M., Stahl, H., Koller, T., and Knippers, R. (1986). Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures.
J Mol Biol 189, 189–204 .
10.1016/0022-2836(86)90390-6[100] Sporbert, A., Gahl, A., Ankerhold, R., Leonhardt, H., and Cardoso, M.C. (2002). DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters.
Mol Cell 10, 1355–1365 .
10.1016/S1097-2765(02)00729-3[101] Stewart, M.D., Li, J., and Wong, J. (2005). Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment.
Mol Cell Biol 25, 2525–2538 .
10.1128/MCB.25.7.2525-2538.2005[102] Stuwe, T., Hothorn, M., Lejeune, E., Rybin, V., Bortfeld, M., Scheffzek, K., and Ladurner, A.G. (2008). The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module.
Proc Natl Acad Sci U S A 105, 8884–8889 .
10.1073/pnas.0712293105[103] Sugasawa, K., Ishimi, Y., Eki, T., Hurwitz, J., Kikuchi, A., and Hanaoka, F. (1992). Nonconservative segregation of parental nucleosomes during simian virus 40 chromosome replication in vitro.
Proc Natl Acad Sci U S A 89, 1055–1059 .
10.1073/pnas.89.3.1055[104] Taddei, A., Roche, D., Sibarita, J.B., Turner, B.M., and Almouzni, G. (1999). Duplication and maintenance of heterochromatin domains.
J Cell Biol 147, 1153–1166 .
10.1083/jcb.147.6.1153[105] Tagami, H., Ray-Gallet, D., Almouzni, G., and Nakatani, Y. (2004). Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis.
Cell 116, 51–61 .
10.1016/S0092-8674(03)01064-X[106] Takami, Y., Ono, T., Fukagawa, T., Shibahara, K., and Nakayama, T. (2007). Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells.
Mol Biol Cell 18, 129–141 .
10.1091/mbc.E06-05-0426[107] Tan, B.C., Chien, C.T., Hirose, S., and Lee, S.C. (2006). Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication.
EMBO J 25, 3975–3985 .
10.1038/sj.emboj.7601271[108] Tsubota, T., Berndsen, C.E., Erkmann, J.A., Smith, C.L., Yang, L., Freitas, M.A., Denu, J.M., and Kaufman, P.D. (2007). Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes.
Mol Cell 25, 703–712 .
10.1016/j.molcel.2007.02.006[109] VanDemark, A.P., Blanksma, M., Ferris, E., Heroux, A., Hill, C.P., and Formosa, T. (2006). The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition.
Mol Cell 22, 363–374 .
10.1016/j.molcel.2006.03.025[110] Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4.
Cell 87, 95–104 .
10.1016/S0092-8674(00)81326-4[111] Vincent, J.A., Kwong, T.J., and Tsukiyama, T. (2008). ATP-dependent chromatin remodeling shapes the DNA replication landscape.
Nat Struct Mol Biol 15, 477–484 .
10.1038/nsmb.1419[112] Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I., and Martienssen, R.A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.
Science 297, 1833–1837 .
10.1126/science.1074973[113] Xie, W., Song, C., Young, N.L., Sperling, A.S., Xu, F., Sridharan, R., Conway, A.E., Garcia, B.A., Plath, K., Clark, A.T.,
. (2009). Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells.
Mol Cell 33, 417–427 .
10.1016/j.molcel.2009.02.004[114] Xu, M., Long, C., Chen, X., Huang, C., Chen, S., and Zhu, B. (2010). Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly.
Science 328, 94–98 .
10.1126/science.1178994[115] Yamasu, K., and Senshu, T. (1990). Conservative segregation of tetrameric units of H3 and H4 histones during nucleosome replication.
J Biochem 107, 15–20 .
[116] Ye, X., Franco, A.A., Santos, H., Nelson, D.M., Kaufman, P.D., and Adams, P.D. (2003). Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest.
Mol Cell 11, 341–351 .
10.1016/S1097-2765(03)00037-6[117] Zee, B.M., Levin, R.S., Xu, B., LeRoy, G., Wingreen, N.S., and Garcia, B.A. (2010). In vivo residue-specific histone methylation dynamics.
J Biol Chem 285, 3341–3350 .
10.1074/jbc.M109.063784[118] Zhang, Z., Shibahara, K., and Stillman, B. (2000). PCNA connects DNA replication to epigenetic inheritance in yeast.
Nature 408, 221–225 .
10.1038/35048530