Nucleosome assembly and epigenetic inheritance

Mo Xu1,2, Bing Zhu2()

PDF(175 KB)
PDF(175 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (9) : 820-829. DOI: 10.1007/s13238-010-0104-0
REVIEW
REVIEW

Nucleosome assembly and epigenetic inheritance

  • Mo Xu1,2, Bing Zhu2()
Author information +
History +

Abstract

In eukaryotic cells, histones are packaged into octameric core particles with DNA wrapping around to form nucleosomes, which are the basic units of chromatin (Kornberg and Thomas, 1974). Multicellular organisms utilise chromatin marks to translate one single genome into hundreds of epigenomes for their corresponding cell types. Inheritance of epigenetic status is critical for the maintenance of gene expression profile during mitotic cell divisions (Allis et al., 2006). During S phase, canonical histones are deposited onto DNA in a replication-coupled manner (Allis et al., 2006). To understand how dividing cells overcome the dilution of epigenetic marks after chromatin duplication, DNA replication coupled (RC) nucleosome assembly has been of great interest. In this review, we focus on the potential influence of RC nucleosome assembly processes on the maintenance of epigenetic status.

Keywords

nucleosome assembly / epigenetic inheritance / DNA replication coupled

Cite this article

Download citation ▾
Mo Xu, Bing Zhu. Nucleosome assembly and epigenetic inheritance. Prot Cell, 2010, 1(9): 820‒829 https://doi.org/10.1007/s13238-010-0104-0

References

[1] Allfrey, V.G., and Mirsky, A.E. (1964). Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 144, 559.10.1126/science.144.3618.559
[2] Allis, C.D., Jenuwein, T., and Reinberg, D. (2006). Overviews and concepts. In Epigenetics, C.D. Allis, T. Jenuwein and D. Reinberg, ed. (New York, USA: Higher Education Press and Springer-Verlag). pp. 23–56 .
[3] Annunziato, A.T. (2005). Split decision: what happens to nucleosomes during DNA replication?J Biol Chem 280, 12065–12068 .10.1074/jbc.R400039200
[4] Annunziato, A.T., and Seale, R.L. (1984). Presence of nucleosomes within irregularly cleaved fragments of newly replicated chromatin. Nucleic Acids Res 12, 6179–6196 .10.1093/nar/12.15.6179
[5] Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 .10.1038/35065138
[6] Barman, H.K., Takami, Y., Ono, T., Nishijima, H., Sanematsu, F., Shibahara, K., and Nakayama, T. (2006). Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 345, 1547–1557 .10.1016/j.bbrc.2006.05.079
[7] Belotserkovskaya, R., Oh, S., Bondarenko, V.A., Orphanides, G., Studitsky, V.M., and Reinberg, D. (2003). FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 .10.1126/science.1085703
[8] Benson, L.J., Gu, Y., Yakovleva, T., Tong, K., Barrows, C., Strack, C.L., Cook, R.G., Mizzen, C.A., and Annunziato, A.T. (2006). Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J Biol Chem 281, 9287–9296 .10.1074/jbc.M512956200
[9] Bonne-Andrea, C., Wong, M.L., and Alberts, B.M. (1990). In vitro replication through nucleosomes without histone displacement. Nature 343, 719–726 .10.1038/343719a0
[10] Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., and Allis, C.D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 .10.1016/S0092-8674(00)81063-6
[11] Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G., and Li, B.F. (1997). Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996–2000 .10.1126/science.277.5334.1996
[12] Collins, N., Poot, R.A., Kukimoto, I., García-Jiménez, C., Dellaire, G., and Varga-Weisz, P.D. (2002). An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32, 627–632 .10.1038/ng1046
[13] Cusick, M.E., Herman, T.M., DePamphilis, M.L., and Wassarman, P.M. (1981). Structure of chromatin at deoxyribonucleic acid replication forks: prenucleosomal deoxyribonucleic acid is rapidly excised from replicating simian virus 40 chromosomes by micrococcal nuclease. Biochemistry 20, 6648–6658 .10.1021/bi00526a020
[14] Cusick, M.E., DePamphilis, M.L., and Wassarman, P.M. (1984). Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes. J Mol Biol 178, 249–271 .10.1016/0022-2836(84)90143-8
[15] Das, C., Lucia, M.S., Hansen, K.C., and Tyler, J.K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459, 113–117 .10.1038/nature07861
[16] Eissenberg, J.C. (2006). Divided loyalties: transdetermination and the genetics of tissue regeneration. Bioessays 28, 574–577 .10.1002/bies.20410
[17] Eissenberg, J.C., James, T.C., Foster-Hartnett, D.M., Hartnett, T., Ngan, V., and Elgin, S.C. (1990). Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A 87, 9923–9927 .10.1073/pnas.87.24.9923
[18] English, C.M., Maluf, N.K., Tripet, B., Churchill, M.E., and Tyler, J.K. (2005). ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 44, 13673–13682 .10.1021/bi051333h
[19] Enomoto, S., and Berman, J. (1998). Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12, 219–232 .10.1101/gad.12.2.219
[20] Enomoto, S., McCune-Zierath, P.D., Gerami-Nejad, M., Sanders, M.A., and Berman, J. (1997). RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev 11, 358–370 .10.1101/gad.11.3.358
[21] Espada, J., Ballestar, E., Fraga, M.F., Villar-Garea, A., Juarranz, A., Stockert, J.C., Robertson, K.D., Fuks, F., and Esteller, M. (2004). Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 279, 37175–37184 .10.1074/jbc.M404842200
[22] Estève, P.O., Chin, H.G., Smallwood, A., Feehery, G.R., Gangisetty, O., Karpf, A.R., Carey, M.F., and Pradhan, S. (2006). Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20, 3089–3103 .10.1101/gad.1463706
[23] Fotedar, R., and Roberts, J.M. (1989). Multistep pathway for replication-dependent nucleosome assembly. Proc Natl Acad Sci U S A 86, 6459–6463 .10.1073/pnas.86.17.6459
[24] Fowler, E., Farb, R., and El-Saidy, S. (1982). Distribution of the core histones H2A.H2B.H3 and H4 during cell replication. Nucleic Acids Res 10, 735–748 .10.1093/nar/10.2.735
[25] Franco, A.A., Lam, W.M., Burgers, P.M., and Kaufman, P.D. (2005). Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19, 1365–1375 .10.1101/gad.1305005
[26] Gambus, A., Jones, R.C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R.D., and Labib, K. (2006). GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8, 358–366 .10.1038/ncb1382
[27] Gasser, R., Koller, T., and Sogo, J.M. (1996). The stability of nucleosomes at the replication fork. J Mol Biol 258, 224–239 .10.1006/jmbi.1996.0245
[28] Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007). Chromatin challenges during DNA replication and repair. Cell 128, 721–733 .10.1016/j.cell.2007.01.030
[29] Groth, A., Corpet, A., Cook, A.J., Roche, D., Bartek, J., Lukas, J., and Almouzni, G. (2007). Regulation of replication fork progression through histone supply and demand. Science 318, 1928–1931 .
[30] Gruss, C., Wu, J., Koller, T., Sogo, J.M. (1993). Disruption of the nucleosomes at the replication fork. EMBO J 12, 4533–4545 .
[31] Hadorn, E. (1968). Transdetermination in cells. Sci Am 219, 110–120 , passim.10.1038/scientificamerican1168-110
[32] Hake, S.B., and Allis, C.D. (2006). Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”.Proc Natl Acad Sci U S A 103, 6428–6435 .10.1073/pnas.0600803103
[33] Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R.M., and Zhang, Z. (2007). Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315, 653–655 .10.1126/science.1133234
[34] Hansen, K.H., Bracken, A.P., Pasini, D., Dietrich, N., Gehani, S.S., Monrad, A., Rappsilber, J., Lerdrup, M., and Helin, K. (2008). A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10, 1291–1300 .10.1038/ncb1787
[35] Henderson, D.S., Banga, S.S., Grigliatti, T.A., and Boyd, J.B. (1994). Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J 13, 1450–1459 .
[36] Henikoff, S., and Ahmad, K. (2005). Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21, 133–153 .10.1146/annurev.cellbio.21.012704.133518
[37] Henikoff, S., Furuyama, T., and Ahmad, K. (2004). Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20, 320–326 .10.1016/j.tig.2004.05.004
[38] Hertel, L., De Andrea, M., Bellomo, G., Santoro, P., Landolfo, S., and Gariglio, M. (1999). The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Res 250, 313–328 .10.1006/excr.1999.4495
[39] Hoek, M., and Stillman, B. (2003). Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci U S A 100, 12183–12188 .10.1073/pnas.1635158100
[40] Huen, M.S., Sy, S.M., van Deursen, J.M., and Chen, J. (2008). Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem 283, 11073–11077 .10.1074/jbc.C700242200
[41] Jackson, V. (1987). Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new histones H3 and H4. Biochemistry 26, 2315–2325 .10.1021/bi00382a037
[42] Jackson, V. (1990). In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29, 719–731 .10.1021/bi00455a019
[43] Jackson, V., and Chalkley, R. (1985). Histone segregation on replicating chromatin. Biochemistry 24, 6930–6938 .10.1021/bi00345a027
[44] Jasencakova, Z., Scharf, A.N., Ask, K., Corpet, A., Imhof, A., Almouzni, G., and Groth, A. (2010). Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37, 736–743 .10.1016/j.molcel.2010.01.033
[45] Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080 .10.1126/science.1063127
[46] J?rgensen, S., Elvers, I., Trelle, M.B., Menzel, T., Eskildsen, M., Jensen, O.N., Helleday, T., Helin, K., and S?rensen, C.S. (2007). The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 179, 1337–1345 .10.1083/jcb.200706150
[47] Kaufman, P.D., Kobayashi, R., Kessler, N., and Stillman, B. (1995). The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81, 1105–1114 .10.1016/S0092-8674(05)80015-7
[48] Kaufman, P.D., Kobayashi, R., and Stillman, B. (1997). Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11, 345–357 .10.1101/gad.11.3.345
[49] Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B., and Araki, T. (2001). FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131–142 .10.1016/S0092-8674(01)00197-0
[50] Kornberg, R.D., and Thomas, J.O. (1974). Chromatin structure; oligomers of the histones. Science 184, 865–868 .10.1126/science.184.4139.865
[51] Krude, T., and Knippers, R. (1991). Transfer of nucleosomes from parental to replicated chromatin. Mol Cell Biol 11, 6257–6267 .
[52] Lachner M., O'Carroll, D., Rea, S., Mechtler, K., Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 .10.1038/35065132
[53] Leonhardt, H., Page, A.W., Weier, H.U., and Bestor, T.H. (1992). A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873 .10.1016/0092-8674(92)90561-P
[54] LeRoy, G., Orphanides, G., Lane, W.S., and Reinberg, D. (1998). Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900–1904 .10.1126/science.282.5395.1900
[55] Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008). Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134, 244–255 .10.1016/j.cell.2008.06.018
[56] Luger, K., M?der, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 .10.1038/38444
[57] Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury, W.J. 3rd, Voigt, P., Martin, S.R., Taylor, W.R., De Marco, V., . (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 .10.1038/nature08398
[58] Martin, C., and Zhang, Y. (2007). Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 19, 266–272 .10.1016/j.ceb.2007.04.002
[59] Marzluff, W.F., Wagner, E.J., and Duronio, R.J. (2008). Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9, 843–854 .10.1038/nrg2438
[60] Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 .10.1038/nature03714
[61] McKnight, S.L., and Miller, O.L. Jr. (1977). Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12, 795–804 .10.1016/0092-8674(77)90278-1
[62] Meijsing, S.H., and Ehrenhofer-Murray, A.E. (2001). The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev 15, 3169–3182 .10.1101/gad.929001
[63] Milutinovic, S., Zhuang, Q., and Szyf, M. (2002). Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 277, 20974–20978 .10.1074/jbc.M202504200
[64] Moggs, J.G., Grandi, P., Quivy, J.P., Jónsson, Z.O., Hübscher, U., Becker, P.B., and Almouzni, G. (2000). A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20, 1206–1218 .10.1128/MCB.20.4.1206-1218.2000
[65] Monson, E.K., de Bruin, D., and Zakian, V.A. (1997). The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci U S A 94, 13081–13086 .10.1073/pnas.94.24.13081
[66] Mosammaparast, N., and Shi, Y. (2010). Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79, 155–179 .10.1146/annurev.biochem.78.070907.103946
[67] Nabatiyan, A., and Krude, T. (2004). Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol 24, 2853–2862 .10.1128/MCB.24.7.2853-2862.2004
[68] Nakatani, Y., Ray-Gallet, D., Quivy, J.P., Tagami, H., and Almouzni, G. (2004). Two distinct nucleosome assembly pathways: dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes. Cold Spring Harb Symp Quant Biol 69, 273–280 .10.1101/sqb.2004.69.273
[69] Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 .10.1126/science.1060118
[70] Natsume, R., Eitoku, M., Akai, Y., Sano, N., Horikoshi, M., and Senda, T. (2007). Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 .10.1038/nature05613
[71] Neumann, H., Hancock, S.M., Buning, R., Routh, A., Chapman, L., Somers, J., Owen-Hughes, T., van Noort, J., Rhodes, D., and Chin, J.W. (2009). A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36, 153–163 .10.1016/j.molcel.2009.07.027
[72] Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S., and Reinberg, D. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116 .10.1016/S0092-8674(00)80903-4
[73] Papamichos-Chronakis, M., and Peterson, C.L. (2008). The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat Struct Mol Biol 15, 338–345 .10.1038/nsmb.1413
[74] Paul, J., and Gilmour, R.S. (1968). Organ-specific restriction of transcription in mammalian chromatin. J Mol Biol 34, 305–316 .10.1016/0022-2836(68)90255-6
[75] Pesavento, J.J., Yang, H., Kelleher, N.L., and Mizzen, C.A. (2008). Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28, 468–486 .10.1128/MCB.01517-07
[76] Peters, A.H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Sch?fer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., . (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell , 107, 323–337 .10.1016/S0092-8674(01)00542-6
[77] Poot, R.A., Bozhenok, L., van den Berg, D.L., Steffensen, S., Ferreira, F., Grimaldi, M., Gilbert, N., Ferreira, J., and Varga-Weisz, P.D. (2004). The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 6, 1236–1244 .10.1038/ncb1196
[78] Pospelov, V., Russev, G., Vassilev, L., and Tsanev, R. (1982). Nucleosome segregation in chromatin replicated in the presence of cycloheximide. J Mol Biol 156, 79–91 .10.1016/0022-2836(82)90460-0
[79] Prior, C.P., Cantor, C.R., Johnson, E.M., and Allfrey, V.G. (1980). Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo. Cell 20, 597–608 .10.1016/0092-8674(80)90306-2
[80] Probst, A.V., Dunleavy, E., and Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10, 192–206 .10.1038/nrm2640
[81] Randall, S.K., and Kelly, T.J. (1992). The fate of parental nucleosomes during SV40 DNA replication. J Biol Chem 267, 14259–14265 .
[82] Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., . (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 .10.1038/35020506
[83] Recht, J., Tsubota, T., Tanny, J.C., Diaz, R.L., Berger, J.M., Zhang, X., Garcia, B.A., Shabanowitz, J., Burlingame, A.L., Hunt, D.F., . (2006). Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci U S A 103, 6988–6993 .10.1073/pnas.0601676103
[84] Reese, B.E., Bachman, K.E., Baylin, S.B., and Rountree, M.R. (2003). The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol Cell Biol 23, 3226–3236 .10.1128/MCB.23.9.3226-3236.2003
[85] Riley, D., and Weintraub, H. (1979). Conservative segregation of parental histones during replication in the presence of cycloheximide. Proc Natl Acad Sci U S A 76, 328–332 .10.1073/pnas.76.1.328
[86] Sarraf, S.A., and Stancheva, I. (2004). Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15, 595–605 .10.1016/j.molcel.2004.06.043
[87] Scharf, A.N., Barth, T.K., and Imhof, A. (2009). Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 37, 5032–5040 .10.1093/nar/gkp518
[88] Schlesinger, M.B., and Formosa, T. (2000). POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155, 1593–1606 .
[89] Schotta, G., Ebert, A., Krauss, V., Fischer, A., Hoffmann, J., Rea, S., Jenuwein, T., Dorn, R., and Reuter, G. (2002). Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21, 1121–1131 .10.1093/emboj/21.5.1121
[90] Schulz, L.L., and Tyler, J.K. (2006). The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication. FASEB J 20, 488–490 .
[91] Schwartz, Y.B., and Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8, 9–22 .10.1038/nrg1981
[92] Seale, R.L. (1976). Studies on the mode of segregation of histone nu bodies during replication in HeLa cells. Cell 9, 423–429 .10.1016/0092-8674(76)90087-8
[93] Seidman, M.M., Levine, A.J., and Weintraub, H. (1979). The asymmetric segregation of parental nucleosomes during chrosome replication. Cell 18, 439–449 .10.1016/0092-8674(79)90063-1
[94] Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76, 75–100 .10.1146/annurev.biochem.76.052705.162114
[95] Shibahara, K., and Stillman, B. (1999). Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 .10.1016/S0092-8674(00)80661-3
[96] Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75, 243–269 .10.1146/annurev.biochem.75.103004.142422
[97] Smith, S., and Stillman, B. (1989). Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58, 15–25 .10.1016/0092-8674(89)90398-X
[98] Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T., and Allis, C.D. (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A 92, 1237–1241 .10.1073/pnas.92.4.1237
[99] Sogo, J.M., Stahl, H., Koller, T., and Knippers, R. (1986). Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 189, 189–204 .10.1016/0022-2836(86)90390-6
[100] Sporbert, A., Gahl, A., Ankerhold, R., Leonhardt, H., and Cardoso, M.C. (2002). DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10, 1355–1365 .10.1016/S1097-2765(02)00729-3
[101] Stewart, M.D., Li, J., and Wong, J. (2005). Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25, 2525–2538 .10.1128/MCB.25.7.2525-2538.2005
[102] Stuwe, T., Hothorn, M., Lejeune, E., Rybin, V., Bortfeld, M., Scheffzek, K., and Ladurner, A.G. (2008). The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module. Proc Natl Acad Sci U S A 105, 8884–8889 .10.1073/pnas.0712293105
[103] Sugasawa, K., Ishimi, Y., Eki, T., Hurwitz, J., Kikuchi, A., and Hanaoka, F. (1992). Nonconservative segregation of parental nucleosomes during simian virus 40 chromosome replication in vitro. Proc Natl Acad Sci U S A 89, 1055–1059 .10.1073/pnas.89.3.1055
[104] Taddei, A., Roche, D., Sibarita, J.B., Turner, B.M., and Almouzni, G. (1999). Duplication and maintenance of heterochromatin domains. J Cell Biol 147, 1153–1166 .10.1083/jcb.147.6.1153
[105] Tagami, H., Ray-Gallet, D., Almouzni, G., and Nakatani, Y. (2004). Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 .10.1016/S0092-8674(03)01064-X
[106] Takami, Y., Ono, T., Fukagawa, T., Shibahara, K., and Nakayama, T. (2007). Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol Biol Cell 18, 129–141 .10.1091/mbc.E06-05-0426
[107] Tan, B.C., Chien, C.T., Hirose, S., and Lee, S.C. (2006). Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J 25, 3975–3985 .10.1038/sj.emboj.7601271
[108] Tsubota, T., Berndsen, C.E., Erkmann, J.A., Smith, C.L., Yang, L., Freitas, M.A., Denu, J.M., and Kaufman, P.D. (2007). Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell 25, 703–712 .10.1016/j.molcel.2007.02.006
[109] VanDemark, A.P., Blanksma, M., Ferris, E., Heroux, A., Hill, C.P., and Formosa, T. (2006). The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 22, 363–374 .10.1016/j.molcel.2006.03.025
[110] Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 .10.1016/S0092-8674(00)81326-4
[111] Vincent, J.A., Kwong, T.J., and Tsukiyama, T. (2008). ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 15, 477–484 .10.1038/nsmb.1419
[112] Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I., and Martienssen, R.A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 .10.1126/science.1074973
[113] Xie, W., Song, C., Young, N.L., Sperling, A.S., Xu, F., Sridharan, R., Conway, A.E., Garcia, B.A., Plath, K., Clark, A.T., . (2009). Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol Cell 33, 417–427 .10.1016/j.molcel.2009.02.004
[114] Xu, M., Long, C., Chen, X., Huang, C., Chen, S., and Zhu, B. (2010). Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 .10.1126/science.1178994
[115] Yamasu, K., and Senshu, T. (1990). Conservative segregation of tetrameric units of H3 and H4 histones during nucleosome replication. J Biochem 107, 15–20 .
[116] Ye, X., Franco, A.A., Santos, H., Nelson, D.M., Kaufman, P.D., and Adams, P.D. (2003). Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11, 341–351 .10.1016/S1097-2765(03)00037-6
[117] Zee, B.M., Levin, R.S., Xu, B., LeRoy, G., Wingreen, N.S., and Garcia, B.A. (2010). In vivo residue-specific histone methylation dynamics. J Biol Chem 285, 3341–3350 .10.1074/jbc.M109.063784
[118] Zhang, Z., Shibahara, K., and Stillman, B. (2000). PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221–225 .10.1038/35048530
AI Summary AI Mindmap
PDF(175 KB)

Accesses

Citations

Detail

Sections
Recommended

/