[1] Allen, R.W., Trach, K.A., and Hoch, J.A. (1987). Identification of the 37-kDa protein displaying a variable interaction with the erythroid cell membrane as glyceraldehyde-3-phosphate dehydrogenase.
J Biol Chem 262, 649–653 .
[2] Appelmelk, B.J., van Die, I., van Vliet, S.J., Vandenbroucke-Grauls, C.M., Geijtenbeek, T.B., and van Kooyk, Y. (2003). Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells.
J Immunol 170, 1635–1639 .
[3] Appelmelk, B.J., den Dunnen, J., Driessen, N.N., Ummels, R., Pak, M., Nigou, J., Larrouy-Maumus, G., Gurcha, S.S., Movahedzadeh, F., Geurtsen, J.,
. (2008). The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction.
Cell Microbiol 10, 930–944 .
10.1111/j.1462-5822.2007.01097.x[4] Armstrong, J.A., and Hart, P.D. (1975). Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival.
J Exp Med 142, 1–16 .
10.1084/jem.142.1.1[5] Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity.
Nature 392, 245–252 .
10.1038/32588[6] Bashirova, A.A., Geijtenbeek, T.B., van Duijnhoven, G.C., van Vliet, S.J., Eilering, J.B., Martin, M.P., Wu, L., Martin, T.D., Viebig, N., Knolle, P.A.,
. (2001). A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection.
J Exp Med 193, 671–678 .
10.1084/jem.193.6.671[7] Bigi, F., Espitia, C., Alito, A., Zumarraga, M., Romano, M.I., Cravero, S., and Cataldi, A. (1997). A novel 27 kDa lipoprotein antigen from Mycobacterium bovis.
Microbiology 143, 3599–3605 .
10.1099/00221287-143-11-3599[8] Bigi, F., Gioffré, A., Klepp, L., Santangelo, M.P., Alito, A., Caimi, K., Meikle, V., Zumárraga, M., Taboga, O., Romano, M.I.,
. (2004). The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis.
Microbes Infect 6, 182–187 .
10.1016/j.micinf.2003.10.010[9] Carroll, M.V., Lack, N., Sim, E., Krarup, A., and Sim, R.B. (2009). Multiple routes of complement activation by Mycobacterium bovis BCG.
Mol Immunol 46, 3367–3378 .
10.1016/j.molimm.2009.07.015[10] Clemens, D.L., and Horwitz, M.A. (1995). Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited.
J Exp Med 181, 257–270 .
10.1084/jem.181.1.257[11] Downing, J.F., Pasula, R., Wright, J.R., Twigg, H.L. 3rd, and Martin, W.J. 2nd. (1995). Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus.
Proc Natl Acad Sci U S A 92, 4848–4852 .
10.1073/pnas.92.11.4848[12] Fairbanks, G., Steck, T.L., and Wallach, D.F. (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.
Biochemistry 10, 2606–2617 .
10.1021/bi00789a030[13] Feinberg, H., Mitchell, D.A., Drickamer, K., and Weis, W.I. (2001). Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR.
Science 294, 2163–2166 .
10.1126/science.1066371[14] Fenton, M.J., and Vermeulen, M.W. (1996). Immunopathology of tuberculosis: roles of macrophages and monocytes.
Infect Immun 64, 683–690 .
[15] Friedland, J.S., Shattock, R., Remick, D.G., and Griffin, G.E. (1993). Mycobacterial 65-kD heat shock protein induces release of proinflammatory cytokines from human monocytic cells.
Clin Exp Immunol 91, 58–62 .
10.1111/j.1365-2249.1993.tb03354.x[16] Frisk, A., Ison, C.A., and Lagerg?rd, T. (1998). GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells.
Infect Immun 66, 1252–1257 .
[17] Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., and Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis.
Nucleic Acids Res 31, 3784–3788 .
10.1093/nar/gkg563[18] Gehring, A.J., Dobos, K.M., Belisle, J.T., Harding, C.V., and Boom, W.H. (2004). Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing.
J Immunol 173, 2660–2668 .
[19] Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Adema, G.J., van Kooyk, Y., and Figdor, C.G. (2000a). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses.
Cell 100, 575–585 .
[20] Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R.,
. (2000b). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells.
Cell 100, 587–597 .
[21] Geijtenbeek, T.B., Van Vliet, S.J., Koppel, E.A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C.M., Appelmelk, B., and Van Kooyk, Y. (2003). Mycobacteria target DC-SIGN to suppress dendritic cell function.
J Exp Med 197, 7–17 .
10.1084/jem.20021229[22] Gil-Navarro, I., Gil, M.L., Casanova, M., O’Connor, J.E., Martínez, J.P., and Gozalbo, D. (1997). The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen.
J Bacteriol 179, 4992–4999 .
[23] Goudot-Crozel, V., Caillol, D., Djabali, M., and Dessein, A.J. (1989). The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde-3P-dehydrogenase.
J Exp Med 170, 2065–2080 .
10.1084/jem.170.6.2065[24] Gringhuis, S.I., den Dunnen, J., Litjens, M., van Het Hof, B., van Kooyk, Y., and Geijtenbeek, T.B. (2007). C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB.
Immunity 26, 605–616 .
10.1016/j.immuni.2007.03.012[25] Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., Geijtenbeek, T.B. (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori.
[26] Guo, Y., Feinberg, H., Conroy, E., Mitchell, D.A., Alvarez, R., Blixt, O., Taylor, M.E., Weis, W.I., and Drickamer, K. (2004). Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR.
Nat Struct Mol Biol 11, 591–598 .
10.1038/nsmb784[27] Hanawa, T., Fukuda, M., Kawakami, H., Hirano, H., Kamiya, S., and Yamamoto, T. (1999). The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages.
Cell Stress Chaperones 4, 118–128 .
[28] Henderson, R.A., Watkins, S.C., and Flynn, J.L. (1997). Activation of human dendritic cells following infection with Mycobacterium tuberculosis.
J Immunol 159, 635–643 .
[29] Hennequin, C., Porcheray, F., Waligora-Dupriet, A., Collignon, A., Barc, M., Bourlioux, P., and Karjalainen, T. (2001). GroEL (Hsp60) of Clostridium difficile is involved in cell adherence.
Microbiology 147, 87–96 .
[30] Herrmann, J.L., Delahay, R., Gallagher, A., Robertson, B., and Young, D. (2000). Analysis of post-translational modification of mycobacterial proteins using a cassette expression system.
FEBS Lett 473, 358–362 .
10.1016/S0014-5793(00)01553-2[31] Hickey, T.B., Thorson, L.M., Speert, D.P., Daffé, M., and Stokes, R.W. (2009). Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages.
Infect Immun 77, 3389–3401 .
10.1128/IAI.00143-09[32] Hu, Y., Henderson, B., Lund, P.A., Tormay, P., Ahmed, M.T., Gurcha, S.S., Besra, G.S., and Coates, A.R. (2008). A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection.
Infect Immun 76, 1535–1546 .
10.1128/IAI.01078-07[33] J?kel, A., Clark, H., Reid, K.B.M., and Sim, R.B. (2010a). The human lung surfactant proteins A (SP-A) and D (SP-D) interact with apoptotic target cells by different binding mechanisms.
Immunobiology 215, 551–558 .
10.1016/j.imbio.2009.09.005[34] J?kel, A., Reid, K.B.M., and Clark, H. (2010b). Surfactant protein A (SP-A) binds to phosphatidylserine and competes with annexin V binding on late apoptotic cells.
Protein Cell 1, 188–197 .
10.1007/s13238-010-0024-z[35] J?kel, A., Clark, H., Reid, K.B.M., and Sim, R.B. (2010c). Surface-bound myeloperoxidase is a ligand for recognition of late apoptotic neutrophils by human lung surfactant proteins A and D.
Protein Cell 1, 563–572 .
10.1007/s13238-010-0076-0[36] Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D. Jr, Thackray, L.B., Young, M.D., Mason, R.J.,
. (2004). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus.
Proc Natl Acad Sci U S A 101, 15748–15753 .
10.1073/pnas.0403812101[37] Kenny, B., and Finlay, B.B. (1995). Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells.
Proc Natl Acad Sci U S A 92, 7991–7995 .
10.1073/pnas.92.17.7991[38] Kong, T.H., Coates, A.R., Butcher, P.D., Hickman, C.J., and Shinnick, T.M. (1993). Mycobacterium tuberculosis expresses two chaperonin-60 homologs.
Proc Natl Acad Sci U S A 90, 2608–2612 .
10.1073/pnas.90.7.2608[39] Krarup, A., Wallis, R., Presanis, J.S., Gál, P., Sim, R.B., and Sommer, P. (2007). Simultaneous activation of complement and coagulation by MBL-associated serine protease 2.
PLoS ONE 2, e623.
10.1371/journal.pone.0000623[40] Lee, B., Leslie, G., Soilleux, E., O’Doherty, U., Baik, S., Levroney, E., Flummerfelt, K., Swiggard, W., Coleman, N., Malim, M.,
. (2001). cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor.
J Virol 75, 12028–12038 .
10.1128/JVI.75.24.12028-12038.2001[41] Lewthwaite, J.C., Coates, A.R., Tormay, P., Singh, M., Mascagni, P., Poole, S., Roberts, M., Sharp, L., and Henderson, B. (2001). Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain.
Infect Immun 69, 7349–7355 .
10.1128/IAI.69.12.7349-7355.2001[42] Maeda, N., Nigou, J., Herrmann, J.L., Jackson, M., Amara, A., Lagrange, P.H., Puzo, G., Gicquel, B., and Neyrolles, O. (2003). The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan.
J Biol Chem 278, 5513–5516 .
10.1074/jbc.C200586200[43] Mitchell, D.A., Fadden, A.J., and Drickamer, K. (2001). A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands.
J Biol Chem 276, 28939–28945 .
10.1074/jbc.M104565200[44] Pancholi, V., and Fischetti, V.A. (1992). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity.
J Exp Med 176, 415–426 .
10.1084/jem.176.2.415[45] Parker, A.E., and Bermudez, L.E. (2000). Sequence and characterization of the glyceraldehyde-3-phosphate dehydrogenase of Mycobacterium avium: correlation with an epidermal growth factor binding protein.
Microb Pathog 28, 135–144 .
10.1006/mpat.1999.0335[46] Pasula, R., Downing, J.F., Wright, J.R., Kachel, D.L., Davis, T.E. Jr, and Martin, W.J. 2nd. (1997). Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages.
Am J Respir Cell Mol Biol 17, 209–217 .
[47] Pitarque, S., Herrmann, J.L., Duteyrat, J.L., Jackson, M., Stewart, G.R., Lecointe, F., Payre, B., Schwartz, O., Young, D.B., Marchal, G.,
. (2005). Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity.
Biochem J 392, 615–624 .
[48] P?hlmann, S., Soilleux, E.J., Baribaud, F., Leslie, G.J., Morris, L.S., Trowsdale, J., Lee, B., Coleman, N., and Doms, R.W. (2001). DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans.
Proc Natl Acad Sci U S A 98, 2670–2675 .
10.1073/pnas.051631398[49] Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., and Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes.
Nat Protoc 1, 2856–2860 .
10.1038/nprot.2006.468[50] Soilleux, E.J., Barten, R., and Trowsdale, J. (2000). DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13.
J Immunol 165, 2937–2942 .
[51] Sturgill-Koszycki, S., Schaible, U.E., and Russell, D.G. (1996). Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis.
EMBO J 15, 6960–6968 .
[52] Tailleux, L., Schwartz, O., Herrmann, J.L., Pivert, E., Jackson, M., Amara, A., Legres, L., Dreher, D., Nicod, L.P., Gluckman, J.C.,
. (2003). DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells.
J Exp Med 197, 121–127 .
10.1084/jem.20021468[53] Takaya, A., Tomoyasu, T., Matsui, H., and Yamamoto, T. (2004). The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection.
Infect Immun 72, 1364–1373 .
10.1128/IAI.72.3.1364-1373.2004[54] van Kooyk, Y., and Geijtenbeek, T.B. (2003). DC-SIGN: escape mechanism for pathogens.
Nat Rev Immunol 3, 697–709 .
10.1038/nri1182[55] Vannberg, F.O., Chapman, S.J., Khor, C.C., Tosh, K., Floyd, S., Jackson-Sillah, D., Crampin, A., Sichali, L., Bah, B., Gustafson, P.,
. (2008). CD209 genetic polymorphism and tuberculosis disease.
PLoS ONE 3, e1388.
10.1371/journal.pone.0001388[56] Weikert, L.F., Edwards, K., Chroneos, Z.C., Hager, C., Hoffman, L., and Shepherd, V.L. (1997). SP-A enhances uptake of bacillus Calmette-Guérin by macrophages through a specific SP-A receptor.
Am J Physiol 272, L989–L995 .
[57] Yamaguchi, H., Osaki, T., Taguchi, H., Hanawa, T., Yamamoto, T., and Kamiya, S. (1996). Flow cytometric analysis of the heat shock protein 60 expressed on the cell surface of Helicobacter pylori.
J Med Microbiol 45, 270–277 .
10.1099/00222615-45-4-270