Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG

Maria V. Carroll1, Robert B. Sim1, Fabiana Bigi2, Anne J?kel1, Robin Antrobus3, Daniel A. Mitchell4()

PDF(689 KB)
PDF(689 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (9) : 859-870. DOI: 10.1007/s13238-010-0101-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG

  • Maria V. Carroll1, Robert B. Sim1, Fabiana Bigi2, Anne J?kel1, Robin Antrobus3, Daniel A. Mitchell4()
Author information +
History +

Abstract

Dendritic-cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN; CD209) has an important role in mediating adherence of Mycobacteria species, including M. tuberculosis and M. bovis BCG to human dendritic cells and macrophages, in which these bacteria can survive intracellularly. DC-SIGN is a C-type lectin, and interactions with mycobacterial cells are believed to occur via mannosylated structures on the mycobacterial surface. Recent studies suggest more varied modes of binding to multiple mycobacterial ligands. Here we identify, by affinity chromatography and mass-spectrometry, four novel ligands of M. bovis BCG that bind to DC-SIGN. The novel ligands are chaperone protein DnaK, 60 kDa chaperonin-1 (Cpn60.1), glyceraldehyde-3 phosphate dehydrogenase (GAPDH) and lipoprotein lprG. Other published work strongly suggests that these are on the cell surface. Of these ligands, lprG appears to bind DC-SIGN via typical protein-glycan interactions, but DnaK and Cpn60.1 binding do not show evidence of carbohydrate-dependent interactions. LprG was also identified as a ligand for DC-SIGNR (L-SIGN; CD299) and the M. tuberculosis orthologue of lprG has been found previously to interact with human toll-like receptor 2. Collectively, these findings offer new targets for combating mycobacterial adhesion and within-host survival, and reinforce the role of DC-SIGN as an important host ligand in mycobacterial infection.

Keywords

DC-SIGN / Mycobacteria / lectins

Cite this article

Download citation ▾
Maria V. Carroll, Robert B. Sim, Fabiana Bigi, Anne J?kel, Robin Antrobus, Daniel A. Mitchell. Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG. Prot Cell, 2010, 1(9): 859‒870 https://doi.org/10.1007/s13238-010-0101-3

References

[1] Allen, R.W., Trach, K.A., and Hoch, J.A. (1987). Identification of the 37-kDa protein displaying a variable interaction with the erythroid cell membrane as glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 262, 649–653 .
[2] Appelmelk, B.J., van Die, I., van Vliet, S.J., Vandenbroucke-Grauls, C.M., Geijtenbeek, T.B., and van Kooyk, Y. (2003). Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol 170, 1635–1639 .
[3] Appelmelk, B.J., den Dunnen, J., Driessen, N.N., Ummels, R., Pak, M., Nigou, J., Larrouy-Maumus, G., Gurcha, S.S., Movahedzadeh, F., Geurtsen, J., . (2008). The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell Microbiol 10, 930–944 .10.1111/j.1462-5822.2007.01097.x
[4] Armstrong, J.A., and Hart, P.D. (1975). Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142, 1–16 .10.1084/jem.142.1.1
[5] Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245–252 .10.1038/32588
[6] Bashirova, A.A., Geijtenbeek, T.B., van Duijnhoven, G.C., van Vliet, S.J., Eilering, J.B., Martin, M.P., Wu, L., Martin, T.D., Viebig, N., Knolle, P.A., . (2001). A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193, 671–678 .10.1084/jem.193.6.671
[7] Bigi, F., Espitia, C., Alito, A., Zumarraga, M., Romano, M.I., Cravero, S., and Cataldi, A. (1997). A novel 27 kDa lipoprotein antigen from Mycobacterium bovis. Microbiology 143, 3599–3605 .10.1099/00221287-143-11-3599
[8] Bigi, F., Gioffré, A., Klepp, L., Santangelo, M.P., Alito, A., Caimi, K., Meikle, V., Zumárraga, M., Taboga, O., Romano, M.I., . (2004). The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect 6, 182–187 .10.1016/j.micinf.2003.10.010
[9] Carroll, M.V., Lack, N., Sim, E., Krarup, A., and Sim, R.B. (2009). Multiple routes of complement activation by Mycobacterium bovis BCG. Mol Immunol 46, 3367–3378 .10.1016/j.molimm.2009.07.015
[10] Clemens, D.L., and Horwitz, M.A. (1995). Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181, 257–270 .10.1084/jem.181.1.257
[11] Downing, J.F., Pasula, R., Wright, J.R., Twigg, H.L. 3rd, and Martin, W.J. 2nd. (1995). Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci U S A 92, 4848–4852 .10.1073/pnas.92.11.4848
[12] Fairbanks, G., Steck, T.L., and Wallach, D.F. (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 2606–2617 .10.1021/bi00789a030
[13] Feinberg, H., Mitchell, D.A., Drickamer, K., and Weis, W.I. (2001). Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163–2166 .10.1126/science.1066371
[14] Fenton, M.J., and Vermeulen, M.W. (1996). Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect Immun 64, 683–690 .
[15] Friedland, J.S., Shattock, R., Remick, D.G., and Griffin, G.E. (1993). Mycobacterial 65-kD heat shock protein induces release of proinflammatory cytokines from human monocytic cells. Clin Exp Immunol 91, 58–62 .10.1111/j.1365-2249.1993.tb03354.x
[16] Frisk, A., Ison, C.A., and Lagerg?rd, T. (1998). GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 66, 1252–1257 .
[17] Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., and Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 3784–3788 .10.1093/nar/gkg563
[18] Gehring, A.J., Dobos, K.M., Belisle, J.T., Harding, C.V., and Boom, W.H. (2004). Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol 173, 2660–2668 .
[19] Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Adema, G.J., van Kooyk, Y., and Figdor, C.G. (2000a). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 .
[20] Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R., . (2000b). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 .
[21] Geijtenbeek, T.B., Van Vliet, S.J., Koppel, E.A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C.M., Appelmelk, B., and Van Kooyk, Y. (2003). Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197, 7–17 .10.1084/jem.20021229
[22] Gil-Navarro, I., Gil, M.L., Casanova, M., O’Connor, J.E., Martínez, J.P., and Gozalbo, D. (1997). The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179, 4992–4999 .
[23] Goudot-Crozel, V., Caillol, D., Djabali, M., and Dessein, A.J. (1989). The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde-3P-dehydrogenase. J Exp Med 170, 2065–2080 .10.1084/jem.170.6.2065
[24] Gringhuis, S.I., den Dunnen, J., Litjens, M., van Het Hof, B., van Kooyk, Y., and Geijtenbeek, T.B. (2007). C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26, 605–616 .10.1016/j.immuni.2007.03.012
[25] Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., Geijtenbeek, T.B. (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori.
[26] Guo, Y., Feinberg, H., Conroy, E., Mitchell, D.A., Alvarez, R., Blixt, O., Taylor, M.E., Weis, W.I., and Drickamer, K. (2004). Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11, 591–598 .10.1038/nsmb784
[27] Hanawa, T., Fukuda, M., Kawakami, H., Hirano, H., Kamiya, S., and Yamamoto, T. (1999). The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 4, 118–128 .
[28] Henderson, R.A., Watkins, S.C., and Flynn, J.L. (1997). Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol 159, 635–643 .
[29] Hennequin, C., Porcheray, F., Waligora-Dupriet, A., Collignon, A., Barc, M., Bourlioux, P., and Karjalainen, T. (2001). GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147, 87–96 .
[30] Herrmann, J.L., Delahay, R., Gallagher, A., Robertson, B., and Young, D. (2000). Analysis of post-translational modification of mycobacterial proteins using a cassette expression system. FEBS Lett 473, 358–362 .10.1016/S0014-5793(00)01553-2
[31] Hickey, T.B., Thorson, L.M., Speert, D.P., Daffé, M., and Stokes, R.W. (2009). Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77, 3389–3401 .10.1128/IAI.00143-09
[32] Hu, Y., Henderson, B., Lund, P.A., Tormay, P., Ahmed, M.T., Gurcha, S.S., Besra, G.S., and Coates, A.R. (2008). A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76, 1535–1546 .10.1128/IAI.01078-07
[33] J?kel, A., Clark, H., Reid, K.B.M., and Sim, R.B. (2010a). The human lung surfactant proteins A (SP-A) and D (SP-D) interact with apoptotic target cells by different binding mechanisms. Immunobiology 215, 551–558 .10.1016/j.imbio.2009.09.005
[34] J?kel, A., Reid, K.B.M., and Clark, H. (2010b). Surfactant protein A (SP-A) binds to phosphatidylserine and competes with annexin V binding on late apoptotic cells. Protein Cell 1, 188–197 .10.1007/s13238-010-0024-z
[35] J?kel, A., Clark, H., Reid, K.B.M., and Sim, R.B. (2010c). Surface-bound myeloperoxidase is a ligand for recognition of late apoptotic neutrophils by human lung surfactant proteins A and D. Protein Cell 1, 563–572 .10.1007/s13238-010-0076-0
[36] Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D. Jr, Thackray, L.B., Young, M.D., Mason, R.J., . (2004). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101, 15748–15753 .10.1073/pnas.0403812101
[37] Kenny, B., and Finlay, B.B. (1995). Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc Natl Acad Sci U S A 92, 7991–7995 .10.1073/pnas.92.17.7991
[38] Kong, T.H., Coates, A.R., Butcher, P.D., Hickman, C.J., and Shinnick, T.M. (1993). Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90, 2608–2612 .10.1073/pnas.90.7.2608
[39] Krarup, A., Wallis, R., Presanis, J.S., Gál, P., Sim, R.B., and Sommer, P. (2007). Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE 2, e623.10.1371/journal.pone.0000623
[40] Lee, B., Leslie, G., Soilleux, E., O’Doherty, U., Baik, S., Levroney, E., Flummerfelt, K., Swiggard, W., Coleman, N., Malim, M., . (2001). cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J Virol 75, 12028–12038 .10.1128/JVI.75.24.12028-12038.2001
[41] Lewthwaite, J.C., Coates, A.R., Tormay, P., Singh, M., Mascagni, P., Poole, S., Roberts, M., Sharp, L., and Henderson, B. (2001). Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69, 7349–7355 .10.1128/IAI.69.12.7349-7355.2001
[42] Maeda, N., Nigou, J., Herrmann, J.L., Jackson, M., Amara, A., Lagrange, P.H., Puzo, G., Gicquel, B., and Neyrolles, O. (2003). The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 278, 5513–5516 .10.1074/jbc.C200586200
[43] Mitchell, D.A., Fadden, A.J., and Drickamer, K. (2001). A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276, 28939–28945 .10.1074/jbc.M104565200
[44] Pancholi, V., and Fischetti, V.A. (1992). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176, 415–426 .10.1084/jem.176.2.415
[45] Parker, A.E., and Bermudez, L.E. (2000). Sequence and characterization of the glyceraldehyde-3-phosphate dehydrogenase of Mycobacterium avium: correlation with an epidermal growth factor binding protein. Microb Pathog 28, 135–144 .10.1006/mpat.1999.0335
[46] Pasula, R., Downing, J.F., Wright, J.R., Kachel, D.L., Davis, T.E. Jr, and Martin, W.J. 2nd. (1997). Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am J Respir Cell Mol Biol 17, 209–217 .
[47] Pitarque, S., Herrmann, J.L., Duteyrat, J.L., Jackson, M., Stewart, G.R., Lecointe, F., Payre, B., Schwartz, O., Young, D.B., Marchal, G., . (2005). Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity. Biochem J 392, 615–624 .
[48] P?hlmann, S., Soilleux, E.J., Baribaud, F., Leslie, G.J., Morris, L.S., Trowsdale, J., Lee, B., Coleman, N., and Doms, R.W. (2001). DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci U S A 98, 2670–2675 .10.1073/pnas.051631398
[49] Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., and Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1, 2856–2860 . 10.1038/nprot.2006.468
[50] Soilleux, E.J., Barten, R., and Trowsdale, J. (2000). DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J Immunol 165, 2937–2942 .
[51] Sturgill-Koszycki, S., Schaible, U.E., and Russell, D.G. (1996). Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 15, 6960–6968 .
[52] Tailleux, L., Schwartz, O., Herrmann, J.L., Pivert, E., Jackson, M., Amara, A., Legres, L., Dreher, D., Nicod, L.P., Gluckman, J.C., . (2003). DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197, 121–127 .10.1084/jem.20021468
[53] Takaya, A., Tomoyasu, T., Matsui, H., and Yamamoto, T. (2004). The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Infect Immun 72, 1364–1373 .10.1128/IAI.72.3.1364-1373.2004
[54] van Kooyk, Y., and Geijtenbeek, T.B. (2003). DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3, 697–709 .10.1038/nri1182
[55] Vannberg, F.O., Chapman, S.J., Khor, C.C., Tosh, K., Floyd, S., Jackson-Sillah, D., Crampin, A., Sichali, L., Bah, B., Gustafson, P., . (2008). CD209 genetic polymorphism and tuberculosis disease. PLoS ONE 3, e1388.10.1371/journal.pone.0001388
[56] Weikert, L.F., Edwards, K., Chroneos, Z.C., Hager, C., Hoffman, L., and Shepherd, V.L. (1997). SP-A enhances uptake of bacillus Calmette-Guérin by macrophages through a specific SP-A receptor. Am J Physiol 272, L989–L995 .
[57] Yamaguchi, H., Osaki, T., Taguchi, H., Hanawa, T., Yamamoto, T., and Kamiya, S. (1996). Flow cytometric analysis of the heat shock protein 60 expressed on the cell surface of Helicobacter pylori. J Med Microbiol 45, 270–277 .10.1099/00222615-45-4-270
AI Summary AI Mindmap
PDF(689 KB)

Accesses

Citations

Detail

Sections
Recommended

/