[1] Aliyari, R., and Ding, S.W. (2009). RNA-based viral immunity initiated by the Dicer family of host immune receptors.
Immunol Rev 227, 176–188 .
10.1111/j.1600-065X.2008.00722.x[2] Brackney, D.E., Beane, J.E., Ebel, G.D., and Holmes, E.C. (2009). RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification.
PLoS Pathog 5, e1000502.
10.1371/journal.ppat.1000502[3] Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., and Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs.
Science 320, 1185–1190 .
10.1126/science.1159151[4] Burgyán, J. (2008). Role of silencing suppressor proteins.
Methods Mol Biol 451, 69–79 .
10.1007/978-1-59745-102-4_5[5] Chan, S.W., Henderson, I.R., and Jacobsen, S.E. (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana.
Nat Rev Genet 6, 351–360 .
10.1038/nrg1601[6] Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator.
Genome Res 14, 1188–1190 .
10.1101/gr.849004[7] Czech, B., Malone, C.D., Zhou, R., Stark, A., Schlingeheyde, C., Dus, M., Perrimon, N., Kellis, M., Wohlschlegel, J.A., Sachidanandam, R.,
. (2008). An endogenous small interfering RNA pathway in Drosophila.
Nature 453, 798–802 .
10.1038/nature07007[8] Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C., and Voinnet, O. (2006). Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense.
Science 313, 68–71 .
10.1126/science.1128214[9] Ding, S.W., and Voinnet, O. (2007). Antiviral immunity directed by small RNAs.
Cell 130, 413–426 .
[10] Donaire, L., Barajas, D., Martínez-García, B., Martínez-Priego, L., Pagán, I., and Llave, C. (2008). Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs.
J Virol 82, 5167–5177 .
10.1128/JVI.00272-08[11] Donaire, L., Wang, Y., Gonzalez-Ibeas, D., Mayer, K.F., Aranda, M.A., and Llave, C. (2009). Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes.
Virology 392, 203–214 .
10.1016/j.virol.2009.07.005[12] Du, Q.S., Duan, C.G., Zhang, Z.H., Fang, Y.Y., Fang, R.X., Xie, Q., and Guo, H.S. (2007). DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures.
J Virol 81, 9142–9151 .
10.1128/JVI.02885-06[13] Elena, S.F., Agudelo-Romero, P., Carrasco, P., Codo?er, F.M., Martín, S., Torres-Barceló, C., and Sanjuán, R. (2008). Experimental evolution of plant RNA viruses.
Heredity 100, 478–483 .
10.1038/sj.hdy.6801088[14] Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L.,
. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes.
PLoS ONE 2, e219.
10.1371/journal.pone.0000219[15] Grimm, D., and Kay, M.A. (2007). Combinatorial RNAi: a winning strategy for the race against evolving targets?
Mol Ther 15, 878–888 .
[16] Havecker, E.R., Wallbridge, L.M., Hardcastle, T.J., Bush, M.S., Kelly, K.A., Dunn, R.M., Schwach, F., Doonan, J.H., and Baulcombe, D.C. (2010). The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci.
Plant Cell 22, 321–334 .
10.1105/tpc.109.072199[17] Hershberg, R., and Petrov, D.A. (2008). Selection on codon bias.
Annu Rev Genet 42, 287–299 .
10.1146/annurev.genet.42.110807.091442[18] Ho, T., Pallett, D., Rusholme, R., Dalmay, T., and Wang, H. (2006). A simplified method for cloning of short interfering RNAs from Brassica juncea infected with Turnip mosaic potyvirus and Turnip crinkle carmovirus.
J Virol Methods 136, 217–223 .
10.1016/j.jviromet.2006.05.016[19] Ho, T., Wang, H., Pallett, D., and Dalmay, T. (2007). Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins.
FEBS Lett 581, 3267–3272 .
10.1016/j.febslet.2007.06.022[20] Ho, T., Rusholme Pilcher, R.L., Edwards, M.L., Cooper, I., Dalmay, T., and Wang, H. (2008). Evidence for GC preference by monocot Dicer-like proteins.
Biochem Biophys Res Commun 368, 433–437 .
10.1016/j.bbrc.2008.01.110[21] H?ck, J., and Meister, G. (2008). The Argonaute protein family.
Genome Biol 9, 210.
10.1186/gb-2008-9-2-210[22] Hutvagner, G., and Simard, M.J. (2008). Argonaute proteins: key players in RNA silencing.
Nat Rev Mol Cell Biol 9, 22–32 .
10.1038/nrm2321[23] Jinek, M., and Doudna, J.A. (2009). A three-dimensional view of the molecular machinery of RNA interference.
Nature 457, 405–412 .
10.1038/nature07755[24] Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., and Carrington, J.C. (2007). Genome-wide profiling and analysis of Arabidopsis siRNAs.
PLoS Biol 5, e57.
10.1371/journal.pbio.0050057[25] Linsen, S.E., de Wit, E., Janssens, G., Heater, S., Chapman, L., Parkin, R.K., Fritz, B., Wyman, S.K., de Bruijn, E., Voest, E.E.,
. (2009). Limitations and possibilities of small RNA digital gene expression profiling.
Nat Methods 6, 474–476 .
10.1038/nmeth0709-474[26] Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis.
Cell 133, 523–536 .
[27] Liu, B., Chen, Z., Song, X., Liu, C., Cui, X., Zhao, X., Fang, J., Xu, W., Zhang, H., Wang, X.,
. (2007). Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development.
Plant Cell 19, 2705–2718 .
10.1105/tpc.107.052209[28] Ma, J.B., Yuan, Y.R., Meister, G., Pei, Y., Tuschl, T., and Patel, D.J. (2005). Structural basis for 5'-end-specific recognition of guide RNA by the A.
fulgidus Piwi protein. Nature 434, 666–670 .
10.1038/nature03514[29] Matranga, C., Tomari, Y., Shin, C., Bartel, D.P., and Zamore, P.D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.
Cell 123, 607–620 .
[30] Matzke, M., Kanno, T., Huettel, B., Daxinger, L., and Matzke, A.J. (2007). Targets of RNA-directed DNA methylation.
Curr Opin Plant Biol 10, 512–519 .
10.1016/j.pbi.2007.06.007[31] Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C.,
. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide.
Cell 133, 116–127 .
[32] Mlotshwa, S., Pruss, G.J., and Vance, V. (2008). Small RNAs in viral infection and host defense.
Trends Plant Sci 13, 375–382 .
10.1016/j.tplants.2008.04.009[33] Molnár, A., Csorba, T., Lakatos, L., Várallyay, E., Lacomme, C., and Burgyán, J. (2005). Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs.
J Virol 79, 7812–7818 .
10.1128/JVI.79.12.7812-7818.2005[34] Montgomery, T.A., Howell, M.D., Cuperus, J.T., Li, D., Hansen, J.E., Alexander, A.L., Chapman, E.J., Fahlgren, N., Allen, E., and Carrington, J.C. (2008). Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation.
Cell 133, 128–141 .
[35] Navarro, B., Pantaleo, V., Gisel, A., Moxon, S., Dalmay, T., Bisztray, G., Di Serio, F., Burgyán, J., and Liu, D.X. (2009). Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction.
PLoS ONE 4, e7686.
10.1371/journal.pone.0007686[36] Ohshima, K., Akaishi, S., Kajiyama, H., Koga, R., and Gibbs, A.J. (2010). Evolutionary trajectory of turnip mosaic virus populations adapting to a new host.
J Gen Virol 91, 788–801 .
10.1099/vir.0.016055-0[37] Parker, J.S., Roe, S.M., and Barford, D. (2005). Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex.
Nature 434, 663–666 .
10.1038/nature03462[38] Pei, Y., and Tuschl, T. (2006). On the art of identifying effective and specific siRNAs.
Nat Methods 3, 670–676 .
10.1038/nmeth911[39] Qi, X., Bao, F.S., Xie, Z., and Aramayo, R. (2009). Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis.
PLoS ONE 4, e4971.
10.1371/journal.pone.0004971[40] Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.
Genes Dev 20, 3407–3425 .
10.1101/gad.1476406[41] Rashid, U.J., Paterok, D., Koglin, A., Gohlke, H., Piehler, J., and Chen, J.C. (2007). Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function.
J Biol Chem 282, 13824–13832 .
10.1074/jbc.M608619200[42] Ruiz-Ferrer, V., and Voinnet, O. (2009). Roles of plant small RNAs in biotic stress responses.
Annu Rev Plant Biol 60, 485–510 .
10.1146/annurev.arplant.043008.092111[43] Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., and Watanabe, Y. (2008). The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins.
Plant Cell Physiol 49, 493–500 .
10.1093/pcp/pcn043[44] Tan, Z., Gibbs, A.J., Tomitaka, Y., Sánchez, F., Ponz, F., and Ohshima, K. (2005). Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus.
J Gen Virol 86, 501–510 .
10.1099/vir.0.80540-0[45] Tomari, Y., Du, T., Haley, B., Schwarz, D.S., Bennett, R., Cook, H.A., Koppetsch, B.S., Theurkauf, W.E., and Zamore, P.D. (2004). RISC assembly defects in the Drosophila RNAi mutant armitage.
Cell 116, 831–841 .
[46] Vaucheret, H. (2008). Plant ARGONAUTES.
Trends Plant Sci 13, 350–358 .
10.1016/j.tplants.2008.04.007[47] Vetsigian, K., and Goldenfeld, N. (2009). Genome rhetoric and the emergence of compositional bias.
Proc Natl Acad Sci U S A 106, 215–220 .
10.1073/pnas.0810122106[48] Wang, H., Huang, L.F., and Cooper, J.I. (2006). Analyses on mutation patterns, detection of population bottlenecks, and suggestion of deleterious-compensatory evolution among members of the genus Potyvirus.
Arch Virol 151, 1625–1633 .
[49] Watanabe, T., Umehara, T., and Kohara, M. (2007). Therapeutic application of RNA interference for hepatitis C virus.
Adv Drug Deliv Rev 59, 1263–1276 .
10.1016/j.addr.2007.03.022[50] Wei, Y., Chen, S., Yang, P., Ma, Z., and Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust.
Genome Biol 10, R6.
10.1186/gb-2009-10-1-r6[51] Yamamoto, T., and Tsunetsugu-Yokota, Y. (2008). Prospects for the therapeutic application of lentivirus-based gene therapy to HIV-1 infection.
Curr Gene Ther 8, 1–8 .
10.2174/156652308783688536[52] Yang, Z., and Nielsen, R. (2008). Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage.
Mol Biol Evol 25, 568–579 .
10.1093/molbev/msm284[53] Zhai, J., Liu, J., Liu, B., Li, P., Meyers, B.C., Chen, X., Cao, X., and Ecker, J.R. (2008). Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.
PLoS Genet 4, e1000056.
10.1371/journal.pgen.1000056[54] Zhang, X., Segers, G.C., Sun, Q., Deng, F., and Nuss, D.L. (2008). Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway.
J Virol 82, 2613–2619 .
10.1128/JVI.02324-07[55] Zhou, H., Wang, H., Huang, L.F., Naylor, M., and Clifford, P. (2005). Heterogeneity in codon usages of sobemovirus genes.
Arch Virol 150, 1591–1605 .
10.1007/s00705-005-0510-4