How to make a minimal genome for synthetic minimal cell

Liu-yan Zhang, Su-hua Chang, Jing Wang()

PDF(129 KB)
PDF(129 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (5) : 427-434. DOI: 10.1007/s13238-010-0064-4
MINI-REVIEW
MINI-REVIEW

How to make a minimal genome for synthetic minimal cell

  • Liu-yan Zhang, Su-hua Chang, Jing Wang()
Author information +
History +

Abstract

As a key focus of synthetic biology, building a minimal artificial cell has given rise to many discussions. A synthetic minimal cell will provide an appropriate chassis to integrate functional synthetic parts, devices and systems with functions that cannot generally be found in nature. The design and construction of a functional minimal genome is a key step while building such a cell/chassis since all the cell functions can be traced back to the genome. Kinds of approaches, based on bioinformatics and molecular biology, have been developed and proceeded to derive essential genes and minimal gene sets for the synthetic minimal genome. Experiments about streamlining genomes of model bacteria revealed genome reduction led to unanticipated beneficial properties, such as high electroporation efficiency and accurate propagation of recombinant genes and plasmids that were unstable in other strains. Recent achievements in chemical synthesis technology for large DNA segments together with the rapid development of the whole-genome sequencing, have transferred synthesis of genes to assembly of the whole genomes based on oligonucleotides, and thus created strong preconditions for synthesis of artificial minimal genome. Here in this article, we review briefly the history and current state of research in this field and summarize the main methods for making a minimal genome. We also discuss the impacts of minimized genome on metabolism and regulation of artificial cell.

Keywords

synthetic biology / minimal genome / essential gene / minimal cell

Cite this article

Download citation ▾
Liu-yan Zhang, Su-hua Chang, Jing Wang. How to make a minimal genome for synthetic minimal cell. Prot Cell, 2010, 1(5): 427‒434 https://doi.org/10.1007/s13238-010-0064-4

References

[1] Akerley, B.J., Rubin, E.J., Novick, V.L., Amaya, K., Judson, N., and Mekalanos, J.J. (2002). A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci U S A 99, 966-971 .10.1073/pnas.012602299
[2] Ara, K., Ozaki, K., Nakamura, K., Yamane, K., Sekiguchi, J., and Ogasawara, N. (2007). Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46, 169-178 .10.1042/BA20060111
[3] Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., and Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006.0008.
[4] Becker, S.A., and Palsson, B.O. (2005). Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5, 12.10.1186/1471-2180-5-8
[5] Benner, S.A., and Sismour, A.M. (2005). Synthetic biology. Nat Rev Genet 438, 533-543 .10.1038/nrg1637
[6] Cello, J., Paul, A.V., and Wimmer, E. (2002). Chemical synthesis of poliovirus cDNA: generation of infections virus in the absence of natural template. Science 297, 1016-1018 .10.1126/science.1072266
[7] Charlebois, R.L., and Doolittle, W.F. (2004). Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res 14, 2469-2477 .10.1101/gr.3024704
[8] Christian, N., May, P., Kempa, S., Handorf, T., and Ebenhoh, O. (2009). An integrative approach towards completing genome-scale metabolic networks. Mol BioSyst 5, 1889-1903 .10.1039/b915913b
[9] Covert, M.W., and Palsson, B.O. (2003). Constraints-based models: Regulation of gene expression reduces the steady-state solution space. J Theor Biol 221, 309-325 .10.1006/jtbi.2003.3071
[10] de Berardinis, V., Vallenet, D., Castelli, V., Besnard, M., Pinet, A., Cruaud, C., Samair, S., Lechaplais, C., Gyapay, G., Richez, C., . (2008). A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 4, 174.10.1038/msb.2008.10
[11] Diez, M.S., Lam, C.M., Leprince, A., and dos Santos, V.A. (2009). (Re-)construction, characterization and modeling of systems for synthetic biology. Biotechnol J 4, 1382-1391 .10.1002/biot.200900173
[12] Duarte, N.C., Herrgard, M.J., and Palsson, B.O. (2004). Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14, 1298-1309 .10.1101/gr.2250904
[13] Fang, G., Rocha, E., and Danchin, A. (2005). How essential are nonessential genes? Mol Biol Evol 22, 2147-2156 .10.1093/molbev/msi211
[14] Fehér, T., Papp, B., Pál, C., and Pósfai, G. (2007). Systematic genome reductions: theoretical and experimental approaches. Chem Rev 107, 3498-3513 .10.1021/cr0683111
[15] Foley, P.L., and Shuler, M.L. (2010). Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng 105, 26-36 .10.1002/bit.22575
[16] Forsyth, R.A., Haselbeck, R.J., Ohlsen, K.L., Yamamoto, R.T., Xu, H., Trawick, J.D., Wall, D., Wang, L., Brown-Driver, V., Froelich, J.M., . (2002). A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43, 1387-1400 .10.1046/j.1365-2958.2002.02832.x
[17] Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D., Bult, C.J., Kerlavage, A.R., Sutton, G., Kelley, J.M., . (1995). The minimal gene complement of Mycoplasma genitalium. Science 270, 397-403 .10.1126/science.270.5235.397
[18] French, C.T., Lao, P., Loraine, A.E., Matthews, B.T., Yu, H., and Dybvig, K. (2008). Large-scale transposon mutagenesis of Mycoplasma pulmonis. Mol Microbiol 69, 67-76 .10.1111/j.1365-2958.2008.06262.x
[19] Gallagher, L.A., Ramage, E., Jacobs, M.A., Kaul, R., Brittnacher, M., and Manoil, C. (2006). A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proc Natl Acad Sci U S A 104, 1009-1014 .10.1073/pnas.0606713104
[20] Gerdes, S.Y., Scholle, M.D., Campbell, J.W., Balazsi, G., Ravasz, E., Daugherty, M.D., Somera, A.L., Kyrpides, N.C., Anderson, I., Gelfand, M.S., . (2003). Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185, 5673-5684 .10.1128/JB.185.19.5673-5684.2003
[21] Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A., . (2008a). Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science 319, 1215-1220 .10.1126/science.1151721
[22] Gibson, D.G., Benders, G.A., Axelrod, K.C., Zaveri, J., Algire, M.A., Moodie, M., Montague, M.G., Venter, J.C., Smith, H.O., and lll, C.A.H. (2008b). One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105, 20404-20409 .
[23] Giga-Hama, Y., Tohda, H., Takegawa, K., and Kumagai, H. (2007). Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46, 147-155 .10.1042/BA20060106
[24] Gil, R., Sabater-Munoz, B., Latorre, A., Silva, F.J., and Moya, A. (2002). Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci U S A 99, 4454-4458 .10.1073/pnas.062067299
[25] Gil, R., Silva, F.J., Pereto, J., and Moya, A. (2004). Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68, 518-537 .10.1128/MMBR.68.3.518-537.2004
[26] Glass, J.I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M.R., Maruf, M., III, C.A.H., Smith, H.O., and Venter, J.C. (2006). Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103, 425-430 .
[27] Herring, C.D., Glasner, J.D., and Blattner, F.R. (2003). Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311, 153-163 .10.1016/S0378-1119(03)00585-7
[28] Hobom, B. (1980). Surgery of genes — at the doorstep of synthetic biology. Med Klin 75, 14-21 .
[29] Holzhütter, S., and Holzhütter, H.-G. (2004). Computational design of reduced metabolic networks. ChemBioChem 5, 1401-1422 .10.1002/cbic.200400128
[30] Hutchison, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O., and Venter, J.C. (1999). Global transposon mutagenesis and a minimal mycoplasma genome. Science 286, 2165-2169 .10.1126/science.286.5447.2165
[31] Itaya, M. (1995). An estimation of minimal genome size required for life. FEBS Letters 362, 257-260 .10.1016/0014-5793(95)00233-Y
[32] Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., Levy, R., . (2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100, 14339-14344 .10.1073/pnas.2036282100
[33] Ji, Y., Zhang, B., Van, S.F., Horn, Warren, P., Woodnutt, G., Burnham, M.K.R., and Rosenberg, M. (2001). Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266-2269 .10.1126/science.1063566
[34] Judson, N., and Mekalanos, J.J. (2000). TnAraOut, A transposon-based approach to identify and characterize essential bacterial genes. Nat Biotechnol 18, 740-745 .10.1038/77305
[35] Kitney, R.I. (2007). Synthetic biology — engineering biologically-based devices and systems. In 11th Mediterranean Conference on Medical and Biological Engineering and Computing 2007, Vols 1 and 2 , T. Jarm, P. Kramar, and A. Zupanic, eds. (Berlin, Springer-Verlag Berlin), pp. 1138-1139 .
[36] Knuth, K., Niesalla, H., Hueck, C.J., and Fuchs, T.M. (2004). Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol 51, 1729-1744 .10.1046/j.1365-2958.2003.03944.x
[37] Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P.,. (2003). Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100, 4678-4683 .10.1073/pnas.0730515100
[38] Koonin, E.V. (2000). How many genes can make a cell: the minimal-gene-set concept. Annu Rev Genomics Hum Genet 01, 99-116 .10.1146/annurev.genom.1.1.99
[39] Koonin, E.V. (2003). Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1, 127-136 .10.1038/nrmicro751
[40] Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., Villanueva, J., Wei, T., and Ausubel, F.M. (2006). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103, 2833-2838 .10.1073/pnas.0511100103
[41] Liolios, K., Mavromatis, K., Tavernarakis, N., and Kyrpides, N.C. (2008). The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucl Acids Res 36, D475-479 .10.1093/nar/gkm884
[42] Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. (2005). The microbial pan-genome. Curr Opin Genet Dev 15, 589-594 .10.1016/j.gde.2005.09.006
[43] Murakami, K., Tao, E., Ito, Y., Sugiyama, M., Kaneko, Y., Harashima, S., Sumiya, T., Nakamura, A., and Nishizawa, M. (2007). Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75, 589-597 .10.1007/s00253-007-0859-2
[44] Mushegian, A.R., and Koonin, E.V. (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93, 10268-10273 .10.1073/pnas.93.19.10268
[45] Posfai, G., III, G.P., Feher, T., Frisch, D., Keit, G.M., Umenhoffer, K., Kolisnychenko, V., Stahl, B., Sharma, S.S., Arruda, M.d., . (2006). Emergent properties of reduced-genome Escherichia coli. Science 312, 1044-1046 .10.1126/science.1126439
[46] Price, N.D., Reed, J.L., and Palsson, B.O. (2004). Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Micro 2, 886-897 .10.1038/nrmicro1023
[47] Puchalka, J., Oberhardt, M.A., Godinho, M., Bielecka, A., Regenhardt, D., Timmis, K.N., Papin, J.A., and Martins dos Santos, V.A. (2008). Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4, e1000210.10.1371/journal.pcbi.1000210
[48] Rawls, R.L. (2000). 'Synthetic biology' makes its debut. Chem Eng News 78, 49-53 .
[49] Reed, J.L., Vo, T.D., Schilling, C.H., and Palsson, B.O. (2003). An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4, 12.10.1186/gb-2003-4-9-r54
[50] Salama, N.R., Shepherd, B., and Falkow, S. (2004). Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186, 7926-7935 .10.1128/JB.186.23.7926-7935.2004
[51] Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 77-84 .10.1046/j.1365-2958.2003.03425.x
[52] Smith, H.O., Hutchison, C.A., Pfannkoch, C., and Venter, J.C. (2003). Generating a synthetic genome by whole genome assembly: ФX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A 100, 15440-15445 .10.1073/pnas.2237126100
[53] Song, J.-H., Ko, K.S., Lee, J.-Y., Baek, J.Y., Oh, W.S., Yoon, H.S., Jeong, J.-Y., and Chun, J. (2005). Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 19, 365-374 .
[54] Sung, B.H., Lee, J.H., and Kim, S.C. (2009). Escherichia coli genome engineering and minimization for the construction of a bioengine. In Systems Biology and Biotechnology of Escherichia coli , S.Y. Lee, ed. (Daejeon, Springer), pp. 19-40 .
[55] Suzuki, N., Nonaka, H., Tsuge, Y., Okayama, S., Inui, M., and Yukawa, H. (2005). Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69, 151-161 .10.1007/s00253-005-1976-4
[56] Szathmáry, E. (2005). Life: In search of the simplest cell. Nature 433, 469-470 .10.1038/433469a
[57] Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., . (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 14.10.1186/1471-2105-4-41
[58] Thanassi, J.A., Hartman-Neumann, S.L., Dougherty, T.J., Dougherty, B.A., and Pucci, M.J. (2002). Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30, 3152-3162 .10.1093/nar/gkf418
[59] The Royal Academy of Engineering (2009). Synthetic Biology: scope, applications and implications (London, The Royal Academy of Engineering ).
[60] Wann, E.R. (2000). Unlocking the secrets of another minimal genome. Trends Microbiol 8, 544-545 .10.1016/S0966-842X(00)01895-3
[61] Yu, B.J., Sung, B.H., Koob, M.D., Lee, C.H., Lee, J.H., Lee, W.S., Kim, M.S., and Kim, S.C. (2002). Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotech 20, 1018-1023 .10.1038/nbt740
[62] Zhang, Y., Thiele, I., Weekes, D., Li, Z., Jaroszewski, L., Ginalski, K., Deacon, A.M., Wooley, J., Lesley, S.A., Wilson, I.A., . (2009). Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325, 1544-1549 .10.1126/science.1174671
AI Summary AI Mindmap
PDF(129 KB)

Accesses

Citations

Detail

Sections
Recommended

/