Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China

Yang Wu1, Zhiyong Lou2, Yi Miao2, Yue Yu2, Hui Dong2, Wei Peng1, Mark Bartlam3, Xuemei Li1, Zihe Rao1,2,3()

PDF(753 KB)
PDF(753 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (5) : 491-500. DOI: 10.1007/s13238-010-0061-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China

  • Yang Wu1, Zhiyong Lou2, Yi Miao2, Yue Yu2, Hui Dong2, Wei Peng1, Mark Bartlam3, Xuemei Li1, Zihe Rao1,2,3()
Author information +
History +

Abstract

Enterovirus 71 (EV71), one of the major causative agents for hand-foot-and-mouth disease (HFMD), has caused more than 100 deaths among Chinese children since March 2008. The EV71 genome encodes an RNA-dependent RNA polymerase (RdRp), denoted 3Dpol, which is central for viral genome replication and is a key target for the discovery of specific antiviral therapeutics. Here we report the crystal structures of EV71 RdRp (3Dpol) and in complex with substrate guanosine-5'-triphosphate and analog 5-bromouridine-5'-triphosphate best to 2.4 ? resolution. The structure of EV71 RdRp (3Dpol) has a wider open thumb domain compared with the most closely related crystal structure of poliovirus RdRp. And the EV71 RdRp (3Dpol) complex with GTP or Br-UTP bounded shows two distinct movements of the polymerase by substrate or analogue binding. The model of the complex with the template:primer derived by superimposition with foot-and-mouth disease virus (FMDV) 3D/RNA complex reveals the likely recognition and binding of template:primer RNA by the polymerase. These results together provide a molecular basis for EV71 RNA replication and reveal a potential target for anti-EV71 drug discovery.

Keywords

enterovirus 71 / RNA-dependent RNA polymerase / crystal structure / drug target

Cite this article

Download citation ▾
Yang Wu, Zhiyong Lou, Yi Miao, Yue Yu, Hui Dong, Wei Peng, Mark Bartlam, Xuemei Li, Zihe Rao. Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Prot Cell, 2010, 1(5): 491‒500 https://doi.org/10.1007/s13238-010-0061-7

References

[1] Andino, R., Rieckhof, G.E., Achacoso, P.L., and Baltimore, D. (1993). Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J 12, 3587–3598 .
[2] Bressanelli, S., Tomei, L., Roussel, A., Incitti, I., Vitale, R.L., Mathieu, M., De Francesco, R., and Rey, F.A. (1999). Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci U S A 96, 13034–13039 .10.1073/pnas.96.23.13034
[3] Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., . (1998). Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905–921 .10.1107/S0907444998003254
[4] Butcher, S.J., Grimes, J.M., Makeyev, E.V., Bamford, D.H., and Stuart, D.I. (2001). A mechanism for initiating RNA-dependent RNA polymerization. Nature 410, 235–240 .10.1038/35065653
[5] Campagnola, G., Weygandt, M., Scoggin, K., and Peersen, O. (2008). Crystal structure of coxsackievirus B3 3Dpol highlights the functional importance of residue 5 in picornavirus polymerases. J Virol 82, 9458–9464 .10.1128/JVI.00647-08
[6] Choi, K.H., Gallei, A., Becher, P., and Rossmann, M.G. (2006). The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain. Structure 14, 1107–1113 .10.1016/j.str.2006.05.020
[7] DeLano, W.L. (2002). The PyMOL Molecular Graphics System.
[8] Domingo, E., Martin, V., Perales, C., and Escarmis, C. (2008). Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol 323, 3–32 .10.1007/978-3-540-75546-3_1
[9] Doublie, S., Tabor, S., Long, A.M., Richardson, C.C., and Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391, 251–258 .10.1038/34593
[10] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 .10.1107/S0907444904019158
[11] Ferrer-Orta, C., Agudo, R., Domingo, E., and Verdaguer, N. (2009). Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Curr Opin Struct Biol 19, 752–758 .10.1016/j.sbi.2009.10.016
[12] Ferrer-Orta, C., Arias, A., Escarmis, C., and Verdaguer, N. (2006). A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol 16, 27–34 .10.1016/j.sbi.2005.12.002
[13] Ferrer-Orta, C., Arias, A., Perez-Luque, R., Escarmis, C., Domingo, E., and Verdaguer, N. (2004). Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279, 47212–47221 .10.1074/jbc.M405465200
[14] Hansen, J.L., Long, A.M., and Schultz, S.C. (1997). Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5, 1109–1122 .10.1016/S0969-2126(97)00261-X
[15] Huang, H., Chopra, R., Verdine, G.L., and Harrison, S.C. (1998). Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 .
[16] Jacobo-Molina, A., Ding, J., Nanni, R.G., Clark, A.D., Jr., Lu, X., Tantillo, C., Williams, R.L., Kamer, G., Ferris, A.L., Clark, P., . (1993). Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 ? resolution shows bent DNA. Proc Natl Acad Sci U S A 90, 6320–6324 .10.1073/pnas.90.13.6320
[17] King, A.M.Q., Brown, F., Christian, P., Hovi, T., Hyypia, T. . (2000). Picornaviridae. In: Virus taxonomy. Seventh report of the international committee for the taxonomy of viruses (Van Regen-mortel, M.H.V., Fauquet, C.M., Bishop, D.H.L., Calisher, C.H. ., Eds), pp. 657–673 .
[18] Laskowski, R., MacArthur, M., Moss, D., and Thornton, J. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283–291 .10.1107/S0021889892009944
[19] Lesburg, C.A., Cable, M.B., Ferrari, E., Hong, Z., Mannarino, A.F., and Weber, P.C. (1999). Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6, 937–943 .10.1038/13305
[20] Li, Y., Korolev, S., and Waksman, G. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J 17, 7514–7525 .10.1093/emboj/17.24.7514
[21] Love, R.A., Maegley, K.A., Yu, X., Ferre, R.A., Lingardo, L.K., Diehl, W., Parge, H.E., Dragovich, P.S., and Fuhrman, S.A. (2004). The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy. Structure 12, 1533–1544 .10.1016/j.str.2004.05.024
[22] Malet, H., Egloff, M.P., Selisko, B., Butcher, R.E., Wright, P.J., Roberts, M., Gruez, A., Sulzenbacher, G., Vonrhein, C., Bricogne, G., . (2007). Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282, 10678–10689 .10.1074/jbc.M607273200
[23] Marcotte, L.L., Wass, A.B., Gohara, D.W., Pathak, H.B., Arnold, J.J., Filman, D.J., Cameron, C.E., and Hogle, J.M. (2007). Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J Virol 81, 3583–3596 .10.1128/JVI.02306-06
[24] Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491–497 .10.1016/0022-2836(68)90205-2
[25] McCoy, A., Grosse-Kunstleve, R., Adams, P., Winn, M., Storoni, L., and Read, R. (2007). Phaser crystallographic software. J Appl Cryst 40, 658–674 .10.1107/S0021889807021206
[26] McMinn, P.C. (2002). An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 26, 91–107 .10.1111/j.1574-6976.2002.tb00601.x
[27] Ng, K.K., Arnold, J.J., and Cameron, C.E. (2008). Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol 320, 137–156 .10.1007/978-3-540-75157-1_7
[28] Ng, K.K., Cherney, M.M., Vazquez, A.L., Machin, A., Alonso, J.M., Parra, F., and James, M.N. (2002). Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 277, 1381–1387 .10.1074/jbc.M109261200
[29] O'Reilly, E.K., and Kao, C.C. (1998). Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252, 287–303 .10.1006/viro.1998.9463
[30] Otwinowski, Z., and W., M. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326 .10.1016/S0076-6879(97)76066-X
[31] Poch, O., Sauvaget, I., Delarue, M., and Tordo, N. (1989). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8, 3867–3874 .
[32] Racaniello, V.R. (2001). Picornaviridae: the viruses and their replication. In Fields Virology , DM Knipeand PM Howley, eds (Philadelphia: Lippincott Williams & Wilkins), pp. 685–722 .
[33] Salgado, P.S., Makeyev, E.V., Butcher, S.J., Bamford, D.H., Stuart, D.I., and Grimes, J.M. (2004). The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase. Structure 12, 307–316 .
[34] Tao, Y., Farsetta, D.L., Nibert, M.L., and Harrison, S.C. (2002). RNA synthesis in a cage—structural studies of reovirus polymerase lambda3. Cell 111, 733–745 .10.1016/S0092-8674(02)01110-8
[35] Thompson, A.A., Albertini, R.A., and Peersen, O.B. (2007). Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions. J Mol Biol 366, 1459–1474 .10.1016/j.jmb.2006.11.070
[36] Thompson, A.A., and Peersen, O.B. (2004). Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23, 3462–3471 .10.1038/sj.emboj.7600357
[37] Yang, Y., Wang, H., Gong, E., Du, J., Zhao, X., McNutt, M.A., Wang, S., Zhong, Y., Gao, Z., and Zheng, J. (2009). Neuropathology in 2 cases of fatal enterovirus type 71 infection from a recent epidemic in the People's Republic of China: a histopathologic, immunohistochemical, and reverse transcription polymerase chain reaction study. Hum Pathol 40, 1288–1295 .10.1016/j.humpath.2009.01.015
[38] Yap, T.L., Xu, T., Chen, Y.L., Malet, H., Egloff, M.P., Canard, B., Vasudevan, S.G., and Lescar, J. (2007). Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81, 4753–4765 .10.1128/JVI.02283-06
[39] Zamyatkin, D.F., Parra, F., Alonso, J.M., Harki, D.A., Peterson, B.R., Grochulski, P., and Ng, K.K. (2008). Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 283, 7705–7712 .10.1074/jbc.M709563200
AI Summary AI Mindmap
PDF(753 KB)

Accesses

Citations

Detail

Sections
Recommended

/