Monoclonal antibodies – a proven and rapidly expanding therapeutic modality for human diseases

Zhiqiang An()

PDF(311 KB)
PDF(311 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (4) : 319-330. DOI: 10.1007/s13238-010-0052-8
REVIEW
REVIEW

Monoclonal antibodies – a proven and rapidly expanding therapeutic modality for human diseases

  • Zhiqiang An()
Author information +
History +

Abstract

The study of antibodies has been a focal point in modern biology and medicine since the early 1900s. However, progress in therapeutic antibody development was slow and intermittent until recently. The first antibody therapy, murine-derived murononab OKT3 for acute organ rejection, was approved by the US Food and Drug Administration (FDA) in 1986, more than a decade after César Milstein and Georges K?hler developed methods for the isolation of mouse monoclonal antibodies from hybridoma cells in 1975. As a result of the scientific, technological, and clinical breakthroughs in the 1980s and 1990s, the pace of therapeutic antibody discovery and development accelerated. Antibodies are becoming a major drug modality with more than two dozen therapeutic antibodies in the clinic and hundreds more in development. Despite the progress, need for improvement exists at every level. Antibody therapeutics provides fertile ground for protein scientists to fulfill the dream of personalized medicine through basic scientific discovery and technological innovation.

Keywords

monoclonal antibodies / personalized medicine / therapeutic antibodies

Cite this article

Download citation ▾
Zhiqiang An. Monoclonal antibodies – a proven and rapidly expanding therapeutic modality for human diseases. Prot Cell, 2010, 1(4): 319‒330 https://doi.org/10.1007/s13238-010-0052-8

References

[1] Albanell, J., and Baselga, J. (1999). Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc) 35, 931–946 .
[2] An, Z. (2009). Therapeutic monoclonal antibodies: from bench to clinic, Hoboken,NJ: John Wiley and Sons.10.1002/9780470485408
[3] An, Z., Forrest, G., Moore, R., Cukan, M., Haytko, P., Huang, L., Vitelli, S., Zhao, J.Z., Lu, P., Hua, J., . (2009). IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs 1 , 572–579 .
[4] Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., and Dwek, R.A. (2007). The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25, 21–50 .10.1146/annurev.immunol.25.022106.141702
[5] Bender, N.K., Heilig, C.E., Dr?ll, B., Wohlgemuth, J., Armbruster, F.P., and Heilig, B. (2007). Immunogenicity, efficacy and adverse events of adalimumab in RA patients. Rheumatol Int 27, 269–274 .10.1007/s00296-006-0183-7
[6] Bostrom, J., Yu, S.F., Kan, D., Appleton, B.A., Lee, C.V., Billeci, K., Man, W., Peale, F., Ross, S., Wiesmann, C., . (2009). Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323, 1610–1614 .10.1126/science.1165480
[7] Carter, P.J. (2006). Potent antibody therapeutics by design. Nat Rev Immunol 6, 343–357 .10.1038/nri1837
[8] Chen, S., Yu, L., Jiang, C., Zhao, Y., Sun, D., Li, S., Liao, G., Chen, Y., Fu, Q., Tao, Q., . (2005). Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23, 1538–1547 .10.1200/JCO.2005.06.108
[9] Chua, Y.J., and Cunningham, D. (2006). Panitumumab. Drugs Today (Barc) 42, 711–719 .10.1358/dot.2006.42.11.1032061
[10] Cohen, D.J., Benvenisty, A.I., Cianci, J., and Hardy, M.A. (1989). OKT3 prophylaxis in cadaveric kidney transplant recipients with delayed graft function. Am J Kidney Dis 14, 19–27 .
[11] Cohenuram, M., and Saif, M.W. (2007). Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs 18, 7–15 .10.1097/CAD.0b013e32800feecb
[12] Cox, K.M., Sterling, J.D., Regan, J.T., Gasdaska, J.R., Frantz, K.K., Peele, C.G., Black, A., Passmore, D., Moldovan-Loomis, C., Srinivasan, M., . (2006). Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24, 1591–1597 .10.1038/nbt1260
[13] Davies, A.J. (2004). Tositumomab and iodine [131I] tositumomab in the management of follicular lymphoma. An oncologist's view. Q J Nucl Med Mol Imaging 48, 305–316 .
[14] Ducry, L., and Stump, B. (2010). Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21, 5–13 .10.1021/bc9002019
[15] Ehrlich, P. (1908). Partial cell functions—Nobel lecture, December 11, 1908 in Physiology or Medicine: including presentation speeches and laureates' biographies. Amsterdam, 1967: Elsevier Publisher.
[16] Enever, C., Batuwangala, T., Plummer, C., and Sepp, A. (2009). Next generation immunotherapeutics—honing the magic bullet. Curr Opin Biotechnol 20, 405–411 .10.1016/j.copbio.2009.07.002
[17] Faulds, D., and Sorkin, E.M. (1994). Abciximab (c7E3 Fab). A review of its pharmacology and therapeutic potential in ischaemic heart disease. Drugs 48, 583–598 .10.2165/00003495-199448040-00007
[18] Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M., Yeung, Y.A., Cochran, J.R., Heinzelman, P., Colby, D., Swers, J., . (2003). Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21, 163–170 .10.1038/nbt785
[19] Ferrajoli, A., O'Brien, S., and Keating, M.J. (2001). Alemtuzumab: a novel monoclonal antibody. Expert Opin Biol Ther 1, 1059–1065 .10.1517/14712598.1.6.1059
[20] Gaza-Bulseco, G., Faldu, S., Hurkmans, K., Chumsae, C., and Liu, H. (2008). Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J Chromatogr B Analyt Technol Biomed Life Sci 870, 55–62 .10.1016/j.jchromb.2008.05.045
[21] Gauvreau, G.M., Becker, A.B., Boulet, L.P., Chakir, J., Fick, R.B., Greene, W.L., Killian, K.J., O'Byrne P, M., Reid, J.K., and Cockcroft, D.W. (2003). The effects of an anti-CD11a mAb, efalizumab, on allergen-induced airway responses and airway inflammation in subjects with atopic asthma. J Allergy Clin Immunol 112, 331–338 .10.1067/mai.2003.1689
[22] Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H.R., and Plückthun, A. (1998). Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A 95, 14130–14135 .10.1073/pnas.95.24.14130
[23] Harvey, B.R., Georgiou, G., Hayhurst, A., Jeong, K.J., Iverson, B.L., and Rogers, G.K. (2004). Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci U S A 101, 9193–9198 .10.1073/pnas.0400187101
[24] Holliger, P., and Hudson, P.J. (2005). Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23, 1126–1136 .10.1038/nbt1142
[25] Holt, L.J., Herring, C., Jespers, L.S., Woolven, B.P., and Tomlinson, I.M. (2003). Domain antibodies: proteins for therapy. Trends Biotechnol 21, 484–490 .10.1016/j.tibtech.2003.08.007
[26] Hoogenboom, H.R. (2005). Selecting and screening recombinant antibody libraries. Nat Biotechnol 23, 1105–1116 .10.1038/nbt1126
[27] Huang, L., Lu, J., Wroblewski, V.J., Beals, J.M., and Riggin, R.M. (2005). In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77, 1432–1439 .10.1021/ac0494174
[28] Jakobovits, A., Amado, R.G., Yang, X., Roskos, L., and Schwab, G. (2007). From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25, 1134–1143 .10.1038/nbt1337
[29] James, L.C., Roversi, P., and Tawfik, D.S. (2003). Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367 .10.1126/science.1079731
[30] Jin, A., Ozawa, T., Tajiri, K., Obata, T., Kondo, S., Kinoshita, K., Kadowaki, S., Takahashi, K., Sugiyama, T., Kishi, H., . (2009). A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat Med 15, 1088–1092 .10.1038/nm.1966
[31] Kaneko, Y., Nimmerjahn, F., and Ravetch, J.V. (2006). Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 .10.1126/science.1129594
[32] Kenneth, T.E., and Kertes, P.J. (2006). Ranibizumab in neovascular age-related macular degeneration. Clin Interv Aging 1, 451–466 .10.2147/ciia.2006.1.4.451
[33] Kerr, D.J. (2004). Targeting angiogenesis in cancer: clinical development of bevacizumab. Nat Clin Pract Oncol 1, 39–43 .10.1038/ncponc0026
[34] Kettleborough, C.A., Saldanha, J., Heath, V.J., Morrison, C.J., and Bendig, M.M. (1991). Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng 4, 773–783 .10.1093/protein/4.7.773
[35] Keating, M.J., Dritselis, A., Yasothan, U., and Kirkpatrick, P. (2010). Ofatumumab. Nat Rev Drug Discov 9, 101–102 .10.1038/nrd3100
[36] Kies, M.S., and Harari, P.M. (2002). Cetuximab (Imclone/Merck/Bristol-Myers Squibb). Curr Opin Investig Drugs 3, 1092–1100 .
[37] K?hler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 .10.1038/256495a0
[38] Krasner, C., and Joyce, R.M. (2001). Zevalin: 90yttrium labeled anti-CD20 (ibritumomab tiuxetan), a new treatment for non-Hodgkin's lymphoma. Curr Pharm Biotechnol 2, 341–349 .10.2174/1389201013378545
[39] Kufer, P., Lutterbüse, R., and Baeuerle, P.A. (2004). A revival of bispecific antibodies. Trends Biotechnol 22, 238–244 .10.1016/j.tibtech.2004.03.006
[40] Kwakkenbos, M.J., Diehl, S.A., Yasuda, E., Bakker, A.Q., van Geelen, C.M., Lukens, M.V., van Bleek, G.M., Widjojoatmodjo, M.N., Bogers, W.M., Mei, H., . (2010). Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat Med 16, 123–128 .10.1038/nm.2071
[41] Lee, C.M., Iorno, N., Sierro, F., and Christ, D. (2007). Selection of human antibody fragments by phage display. Nat Protoc 2, 3001–3008 .10.1038/nprot.2007.448
[42] Li, H., Sethuraman, N., Stadheim, T.A., Zha, D., Prinz, B., Ballew, N., Bobrowicz, P., Choi, B.K., Cook, W.J., Cukan, M., . (2006a). Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24, 210–215 .10.1038/nbt1178
[43] Li, J., Sai, T., Berger, M., Chao, Q., Davidson, D., Deshmukh, G., Drozdowski, B., Ebel, W., Harley, S., Henry, M., . (2006b). Human antibodies for immunotherapy development generated via a human B cell hybridoma technology. Proc Natl Acad Sci U S A 103, 3557–3562 .10.1073/pnas.0511285103
[44] Lin, S., Shen, Z., Zha, D., Sharkey, N., Prinz, B., Hamilton, S., Pavoor, T.V., Bobrowicz, B., Shaikh, S.S., Rittenhour, A.M., . (2010). Selection of Pichia pastoris strains expressing recombinant immunoglobulin G by cell surface labeling. J Immunol Methods.
[45] Lonberg, N. (2005). Human antibodies from transgenic animals. Nat Biotechnol 23, 1117–1125 .10.1038/nbt1135
[46] Maloney, D.G., Grillo-Lopez, A.J., White, C.A., Bodkin, D., Schilder, R.J., Neidhart, J.A., Janakiraman, N., Foon, K.A., Liles, T.M., Dallaire, B.K., . (1997). IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 .
[47] Mimura, Y., Jefferis, R., Mimura-Kimura, Y., Abrahams, J., and Rudd, P.M. (2009). Glycosylation of Therapeutic IgGs. In Therapeutic Monoclonal Antibodies: from Bench to Clinic , An, Z. (ed), pp 67–89 . Hoboken, NJ: John Wiley and Sons, Inc.10.1002/9780470485408.ch3
[48] Morrison, S.L., Johnson, M.J., Herzenberg, L.A., and Oi, V.T. (1984). Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81, 6851–6855 .10.1073/pnas.81.21.6851
[49] Nashan, B., Moore, R., Amlot, P., Schmidt, A.G., Abeywickrama, K., and Soulillou, J.P. (1997). Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 350, 1193–1198 .10.1016/S0140-6736(97)09278-7
[50] Nelson, A.L., and Reichert, J.M. (2009). Development trends for therapeutic antibody fragments. Nat Biotechnol 27, 331–337 .10.1038/nbt0409-331
[51] News (2010). Deal watch: BMS acquires rights for IL-6 inhibitor. Nat Rev Drug Discov 9, 10.
[52] Ogunniyi, A.O., Story, C.M., Papa, E., Guillen, E., and Love, J.C. (2009). Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4, 767–782 .10.1038/nprot.2009.40
[53] Onrust, S.V., and Lamb, H.M. (1998). Infliximab: a review of its use in Crohn's disease and rheumatoid arthritis. BioDrugs 10, 397–422 .10.2165/00063030-199810050-00006
[54] Pappas, D.A., Bathon, J.M., Hanicq, D., Yasothan, U., and Kirkpatrick, P. (2009). Golimumab. Nat Rev Drug Discov 8, 695–696 .10.1038/nrd2982
[55] Paul-Pletzer, K. (2006). Tocilizumab: blockade of interleukin-6 signaling pathway as a therapeutic strategy for inflammatory disorders. Drugs Today (Barc) 42, 559–576 .10.1358/dot.2006.42.9.1025692
[56] Pedersen, M.W., Jacobsen, H.J., Koefoed, K., Hey, A., Pyke, C., Haurum, J.S., and Kragh, M. (2010). Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70, 588–597 .10.1158/0008-5472.CAN-09-1417
[57] Peipp, M., Lammerts van Bueren, J.J., Schneider-Merck, T., Bleeker, W.W., Dechant, M., Beyer, T., Repp, R., van Berkel, P.H., Vink, T., van de Winkel, J.G., . (2008). Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112, 2390–2399. 10.1182/blood-2008-03-144600
[58] Reichert, J.M., and Valge-Archer, V.E. (2007). Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6, 349–356 .10.1038/nrd2241
[59] Rothe, C., Urlinger, S., Lohning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M., . (2007). The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376, 1182–1200 .10.1016/j.jmb.2007.12.018
[60] Rother, R.P., Rollins, S.A., Mojcik, C.F., Brodsky, R.A., and Bell, L. (2007). Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25, 1256–1264 .10.1038/nbt1344
[61] Rudick, R.A., and Sandrock, A. (2004). Natalizumab: alpha 4-integrin antagonist selective adhesion molecule inhibitors for MS. Expert Rev Neurother 4, 571–580 .10.1586/14737175.4.4.571
[62] Russell, N.D., Corvalan, J.R., Gallo, M.L., Davis, C.G., and Pirofski, L. (2000). Production of protective human antipneumococcal antibodies by transgenic mice with human immunoglobulin loci. Infect Immun 68, 1820–1826 .10.1128/IAI.68.4.1820-1826.2000
[63] Rutgeerts P, Schreiber S, Feagan B, Keininger D.L., O'Neil L., Fedorak R.N. (2007) Certolizumab pegol, a monthly subcutaneously administered Fc-free anti-TNFalpha, improves health-related quality of life in patients with moderate to severe Crohn's disease. Int J Colorectal Dis 23, 289–296 .10.1007/s00384-007-0395-7
[64] Sandborn, W.J., Feagan, B.G., Stoinov, S., Honiball, P.J., Rutgeerts, P., Mason, D., Bloomfield, R., Schreiber, S., and the PRECISE 1 Study Investigators. (2007). Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med 357, 228–238 .10.1056/NEJMoa067594
[65] Scheid, J.F., Mouquet, H., Feldhahn, N., Seaman, M.S., Velinzon, K., Pietzsch, J., Ott, R.G., Anthony, R.M., Zebroski, H., Hurley, A., . (2009). Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 .10.1038/nature07930
[66] Smith, E.S., and Zauderer, M. (2009) Antibody selection from immunoglobulin libraries expressed in mammalian cells. In therapeutic monoclonal antibodies: from bench to clinic , An, Z. (ed), pp 283–307 . Hoboken, NJ: John Wiley & Sons
[67] Smith, K., Garman, L., Wrammert, J., Zheng, N.Y., Capra, J.D., Ahmed, R., and Wilson, P.C. (2009). Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4, 372–384 .10.1038/nprot.2009.3
[68] Sorokin, P. (2000). Mylotarg approved for patients with CD33+ acute myeloid leukemia. Clin J Oncol Nurs 4, 279–280 .
[69] Stanfield, R.L., and Wilson, I.A. (2009). Antibody molecular structure. In therapeutic monoclonal antibodies: from bench to clinic , An, Z. (ed), pp 889. Hoboken, NJ: John Wiley & Sons, Inc.
[70] Stangel, M., and Pul, R. (2006). Basic principles of intravenous immunoglobulin (IVIg) treatment. J Neurol 253, V18–24 .10.1007/s00415-006-5003-1
[71] Storch, G.A. (1998). Humanized monoclonal antibody for prevention of respiratory syncytial virus infection. Pediatrics 102, 648–651 .10.1542/peds.102.3.648
[72] Strohl, W.R. (2009). Therapeutic monoclonal antibodies: past, present, and future. In therapeutic monoclonal antibodies: from bench to clinic , An, Z. (ed), pp 889. Hoboken, NJ: John Wiley & Sons, Inc.
[73] Thistlethwaite, J.R. Jr, Haag, B.W., Gaber, A.O., Stuart, J.K., Aronson, A.J., Mayes, J.T., Lloyd, D.M., and Stuart, F.P. (1987). The use of OKT3 to treat steroid-resistant renal allograft rejection in patients receiving cyclosporine. Transplant Proc 19, 1901–1904 .
[74] Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M.R., Murphy, B.R., Rappuoli, R., and Lanzavecchia, A. (2004). An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10, 871–875 .10.1038/nm1080
[75] Van Bockstaele, F., Holz, J.B., and Revets, H. (2009). The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs 10, 1212–1224 .
[76] Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14, 309–314 .10.1038/nbt0396-309
[77] Vincenti, F., Kirkman, R., Light, S., Bumgardner, G., Pescovitz, M., Halloran, P., Neylan, J., Wilkinson, A., Ekberg, H., Gaston, R., . (1998). Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med 338, 161–165 .10.1056/NEJM199801153380304
[78] Walker, L.M., Phogat, S.K., Chan-Hui, P.Y., Wagner, D., Phung, P., Goss, J.L., Wrin, T., Simek, M.D., Fling, S., Mitcham, J.L., . (2009). Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 .10.1126/science.1178746
[79] Wang, Y., Washabaugh, M.W., and Zhao, Q.J. (2009). Characterization of heterogeneity in monoclonal antibody products. In characterization of heterogeneity in monoclonal antibody products , An, Z. (ed), pp 541–554 . Hoboken, NJ: John Wiley and Sons.
[80] Weinblatt, M.E., Keystone, E.C., Furst, D.E., Moreland, L.W., Weisman, M.H., Birbara, C.A., Teoh, L.A., Fischkoff, S.A., and Chartash, E.K. (2003). Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48, 35–45 .10.1002/art.10697
[81] Winau, F., Westphal, O., and Winau, R. (2004). Paul Ehrlich—in search of the magic bullet. Microbes Infect 6, 786–789 .10.1016/j.micinf.2004.04.003
[82] Wrammert, J., Smith, K., Miller, J., Langley, W.A., Kokko, K., Larsen, C., Zheng, N.Y., Mays, I., Garman, L., Helms, C., . (2008). Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 .10.1038/nature06890
[83] Wu, C., Ying, H., Grinnell, C., Bryant, S., Miller, R., Clabbers, A., Bose, S., McCarthy, D., Zhu, R.R., Santora, L., . (2007). Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25, 1290–1297 .10.1038/nbt1345
[84] Yu, Y.L., Lee, P., Ke, Y.H., Zhang, Y.K., Yu, Q., Lee, J., Li, M.Z., Song, J.L., Chen, J.G., Dai, J.H., . (2010). A humanized anti-VEGF rabbit monoclonal antibody inhibits angiogenesis and blocks tumor growth in xenograft models. PLoS One 5, e9072.10.1371/journal.pone.0009072
[85] Zhu, L., van de Lavoir, M.C., Albanese, J., Beenhouwer, D.O., Cardarelli, P.M., Cuison, S., Deng, D.F., Deshpande, S., Diamond, J.H., Green, L., . (2005). Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 23, 1159–1169 .10.1038/nbt1132
AI Summary AI Mindmap
PDF(311 KB)

Accesses

Citations

Detail

Sections
Recommended

/