Crystal structures of NAC domains of human nascent polypeptide-associated complex (NAC) and its αNAC subunit

Lanfeng Wang1, Wenchi Zhang1, Lu Wang1, Xuejun C.Zhang1, Xuemei Li1, Zihe Rao1,2,3()

PDF(620 KB)
PDF(620 KB)
Protein Cell ›› DOI: 10.1007/s13238-010-0049-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Crystal structures of NAC domains of human nascent polypeptide-associated complex (NAC) and its αNAC subunit

  • Lanfeng Wang1, Wenchi Zhang1, Lu Wang1, Xuejun C.Zhang1, Xuemei Li1, Zihe Rao1,2,3()
Author information +
History +

Abstract

Nascent polypeptide associated complex (NAC) and its two isolated subunits, aNAC and bNAC, play important roles in nascent peptide targeting. We determined a 1.9 ? resolution crystal structure of the interaction core of NAC heterodimer and a 2.4 ? resolution crystal structure of aNAC NAC domain homodimer. These structures provide detailed information of NAC heterodimerization and aNAC homodimerization. We found that the NAC domains of aNAC and bNAC share very similar folding despite of their relative low identity of amino acid sequences. Furthermore, different electric charge distributions of the two subunits at the NAC interface provide an explanation to the observation that the heterodimer of NAC complex is more stable than the single subunit homodimer. In addition, we successfully built a bNAC NAC domain homodimer model based on homologous modeling, suggesting that NAC domain dimerization is a general property of the NAC family. These 3D structures allow further studies on structure-function relationship of NAC.

Keywords

nascent polypeptide-associated complex / aNAC homodimer / bNAC / crystal structure

Cite this article

Download citation ▾
Lanfeng Wang, Wenchi Zhang, Lu Wang, Xuejun C.Zhang, Xuemei Li, Zihe Rao. Crystal structures of NAC domains of human nascent polypeptide-associated complex (NAC) and its αNAC subunit. Prot Cell, https://doi.org/10.1007/s13238-010-0049-3

References

[1] Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., . PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221 .10.1107/S0907444909052925
[2] Al-Shanti, N., and Aldahoodi, Z. (2006). Inhibition of alpha nascent polypeptide associated complex protein may induce proliferation, differentiation and enhance the cytotoxic activity of human CD8+ T cells. J Clin Immunol 26, 457–464 .10.1007/s10875-006-9041-3
[3] Al-Shanti, N., Steward, C.G., Garland, R.J., and Rowbottom, A.W. (2004). Investigation of alpha nascent polypeptide-associated complex functions in a human CD8(+) T cell ex vivo expansion model using antisense oligonucleotides. Immunology 112, 397–403 .10.1111/j.1365-2567.2004.01893.x
[4] Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 .10.1093/bioinformatics/bti770
[5] Beatrix, B., Sakai, H., and Wiedmann, M. (2000). The alpha and beta subunit of the nascent polypeptide-associated complex have distinct functions. J Biol Chem 275, 37838–37845 .10.1074/jbc.M006368200
[6] Delano, W. (2002). The PyMOL Molecular Graphics System. http://www.pymol.org.
[7] Deng, J.M., and Behringer, R.R. (1995). An insertional mutation in the BTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res 4, 264–269 .10.1007/BF01969120
[8] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 .10.1107/S0907444904019158
[9] Fünfschilling, U., and Rospert, S. (1999). Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol Biol Cell 10, 3289–3299 .
[10] George, R., Beddoe, T., Landl, K., and Lithgow, T. (1998). The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc Natl Acad Sci U S A 95, 2296–2301 .10.1073/pnas.95.5.2296
[11] Goatley, L.C., Twigg, S.R., Miskin, J.E., Monaghan, P., St-Arnaud, R., Smith, G.L., and Dixon, L.K. (2002). The African swine fever virus protein j4R binds to the alpha chain of nascent polypeptide-associated complex. J Virol 76, 9991–9999 .10.1128/JVI.76.19.9991-9999.2002
[12] Gouet, P., Courcelle, E., Stuart, D.I., and Métoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 .10.1093/bioinformatics/15.4.305
[13] Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 .10.1002/elps.1150181505
[14] Holm, L., and Sander, C. (1993). Protein structure comparison by alignment of distance matrices. J Mol Biol 233, 123–138 .10.1006/jmbi.1993.1489
[15] Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 .10.1002/bip.360221211
[16] Kim, S.H., Shim, K.S., and Lubec, G. (2002). Human brain nascent polypeptide-associated complex alpha subunit is decreased in patients with Alzheimer’ s disease and Down syndrome. J Investig Med 50, 293–301 .10.2310/6650.2002.33287
[17] Kroes, R.A., Jastrow, A., McLone, M.G., Yamamoto, H., Colley, P., Kersey, D.S., Yong, V.W., Mkrdichian, E., Cerullo, L., Leestma, J., . (2000). The identification of novel therapeutic targets for the treatment of malignant brain tumors. Cancer Lett 156, 191–198 .10.1016/S0304-3835(00)00462-6
[18] Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., . (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 .10.1093/bioinformatics/btm404
[19] Laskowski, R.A., Chistyakov, V.V., and Thornton, J.M. (2005). PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res 33, D266–D268 .10.1093/nar/gki001
[20] Lauring, B., Kreibich, G., and Weidmann, M. (1995a). The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc Natl Acad Sci U S A 92, 9435–9439 .10.1073/pnas.92.21.9435
[21] Lauring, B., Sakai, H., Kreibich, G., and Wiedmann, M. (1995b). Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc Natl Acad Sci U S A 92, 5411–5415 .10.1073/pnas.92.12.5411
[22] Li, D., Wang, X.Z., Ding, J., and Yu, J.P. (2005). NACA as a potential cellular target of hepatitis B virus preS1 protein. Dig Dis Sci 50, 1156–1160 .10.1007/s10620-005-2724-4
[23] Lopez, S., Stuhl, L., Fichelson, S., Dubart-Kupperschmitt, A., St Arnaud, R., Galindo, J.R., Murati, A., Berda, N., Dubreuil, P., and Gomez, S. (2005). NACA is a positive regulator of human erythroid-cell differentiation. J Cell Sci 118, 1595–1605 .10.1242/jcs.02295
[24] Markesich, D.C., Gajewski, K.M., Nazimiec, M.E., and Beckingham, K. (2000). bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery*. Development 127, 559–572 .
[25] Melo, F., and Feytmans, E. (1998). Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277, 1141–1152 .10.1006/jmbi.1998.1665
[26] Mittermann, I., Reininger, R., Zimmermann, M., Gangl, K., Reisinger, J., Aichberger, K.J., Greisenegger, E.K., Niederberger, V., Seipelt, J., Bohle, B., . (2008). The IgE-reactive autoantigen Hom s 2 induces damage of respiratory epithelial cells and keratinocytes via induction of IFN-gamma. J Invest Dermatol 128, 1451–1459 .10.1038/sj.jid.5701195
[27] Moller, I., Beatrix, B., Kreibich, G., Sakai, H., Lauring, B., and Wiedmann, M. (1998a). Unregulated exposure of the ribosomal M-site caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Lett 441, 1–5 .10.1016/S0014-5793(98)01440-9
[28] Moller, I., Jung, M., Beatrix, B., Levy, R., Kreibich, G., Zimmermann, R., Wiedmann, M., and Lauring, B. (1998b). A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc Natl Acad Sci U S A 95, 13425–13430 .10.1073/pnas.95.23.13425
[29] Moreau, A., Yotov, W.V., Glorieux, F.H., and St-Arnaud, R. (1998). Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol 18, 1312–1321 .
[30] Mossabeb, R., Seiberler, S., Mittermann, I., Reininger, R., Spitzauer, S., Natter, S., Verdino, P., Keller, W., Kraft, D., and Valenta, R. (2002). Characterization of a novel isoform of alpha-nascent polypeptide-associated complex as IgE-defined autoantigen. J Invest Dermatol 119, 820–829 .10.1046/j.1523-1747.2002.00518.x
[31] Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240–255 .10.1107/S0907444996012255
[32] Otwinowski, Z., Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326 .10.1016/S0076-6879(97)76066-X
[33] Panasenko, O., Landrieux, E., Feuermann, M., Finka, A., Paquet, N., and Collart, M.A. (2006). The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J Biol Chem 281, 31389–31398 .10.1074/jbc.M604986200
[34] Panasenko, O.O., David, F.P., and Collart, M.A. (2009). Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination. Genetics 181, 447–460 .10.1534/genetics.108.095422
[35] Potterton, E., Briggs, P., Turkenburg, M., and Dodson, E. (2003). A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59, 1131–1137 .10.1107/S0907444903008126
[36] Powers, T., and Walter, P. (1996). The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome. Curr Biol 6, 331–338 .10.1016/S0960-9822(02)00484-0
[37] Reimann, B., Bradsher, J., Franke, J., Hartmann, E., Wiedmann, M., Prehn, S., and Wiedmann, B. (1999). Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397–407 .10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U
[38] Scheuring, U.J., Corbeil, J., Mosier, D.E., and Theofilopoulos, A.N. (1998). Early modification of host cell gene expression induced by HIV-1. AIDS 12, 563–570 .10.1097/00002030-199806000-00004
[39] Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31, 3381–3385 .10.1093/nar/gkg520
[40] Shi, X., Parthun, M.R., and Jaehning, J.A. (1995). The yeast EGD2 gene encodes a homologue of the alpha NAC subunit of the human nascent-polypeptide-associated complex. Gene 165, 199–202 .10.1016/0378-1119(95)00577-S
[41] Spreter, T., Pech, M., and Beatrix, B. (2005). The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J Biol Chem 280, 15849–15854 .10.1074/jbc.M500160200
[42] St-Arnaud, R. (1998). Transcriptional regulation during mesenchymal cell differentiation: the role of coactivators. Crit Rev Eukaryot Gene Expr 8, 191–202 .
[43] St-Arnaud, R., and Quelo, I. (1998). Transcriptional coactivators potentiating AP-1 function in bone. Front Biosci 3, d838–d848 .
[44] Thiede, B., Dimmler, C., Siejak, F., and Rudel, T. (2001). Predominant identification of RNA-binding proteins in Fas-induced apoptosis by proteome analysis. J Biol Chem 276, 26044–26050 .10.1074/jbc.M101062200
[45] Wang, S., Sakai, H., and Wiedmann, M. (1995). NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J Cell Biol 130, 519–528 .10.1083/jcb.130.3.519
[46] Wegrzyn, R.D., Hofmann, D., Merz, F., Nikolay, R., Rauch, T., Graf, C., and Deuerling, E. (2006). A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J Biol Chem 281, 2847–2857 .10.1074/jbc.M511420200
[47] Whitby, M.C., and Dixon, J. (2001). Fission yeast nascent polypeptide-associated complex binds to four-way DNA junctions. J Mol Biol 306, 703–716 .10.1006/jmbi.2000.4407
[48] Wiedmann, B., Sakai, H., Davis, T.A., and Wiedmann, M. (1994). A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 .10.1038/370434a0
[49] Yotov, W.V., Moreau, A., and St-Arnaud, R. (1998). The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol Cell Biol 18, 1303–1311 .
[50] Zhang, X.-J., and Matthews, B.W. (1995). EDPDB: a multifunctional tool for protein structure analysis. J Appl Cryst 28, 624–630 .10.1107/S0021889895001063
[51] Zheng, X.M., Moncollin, V., Egly, J.M., and Chambon, P. (1987). A general transcription factor forms a stable complex with RNA polymerase B (II). Cell 50, 361–368 .10.1016/0092-8674(87)90490-9
[52] Zheng, X.M., Black, D., Chambon, P., and Egly, J.M. (1990). Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature 344, 556–559 .10.1038/344556a0
[53] Zuo, L., Ogle, C.K., Fischer, J.E., and Nussbaum, M.S. (1997). mRNA differential display of colonic mucosa cells in ulcerative colitis. J Surg Res 69, 119–127 .10.1006/jsre.1997.5041
AI Summary AI Mindmap
PDF(620 KB)

Accesses

Citations

Detail

Sections
Recommended

/