Crystal structures of catalytic core domain of BIV integrase: implications for the interaction between integrase and target DNA

Xue Yao1,2, Shasha Fang1, Wentao Qiao2, Yunqi Geng2(), Yuequan Shen1()

PDF(497 KB)
PDF(497 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (4) : 363-370. DOI: 10.1007/s13238-010-0047-5
COMMUNICATION
COMMUNICATION

Crystal structures of catalytic core domain of BIV integrase: implications for the interaction between integrase and target DNA

  • Xue Yao1,2, Shasha Fang1, Wentao Qiao2, Yunqi Geng2(), Yuequan Shen1()
Author information +
History +

Abstract

Integrase plays a critical role in the recombination of viral DNA into the host genome. Therefore, over the past decade, it has been a hot target of drug design in the fight against type 1 human immunodeficiency virus (HIV-1). Bovine immunodeficiency virus (BIV) integrase has the same function as HIV-1 integrase. We have determined crystal structures of the BIV integrase catalytic core domain (CCD) in two different crystal forms at a resolution of 2.45? and 2.2?, respectively. In crystal form I, BIV integrase CCD forms a back-to-back dimer, in which the two active sites are on opposite sides. This has also been seen in many of the CCD structures of HIV-1 integrase that were determined previously. However, in crystal form II, BIV integrase CCD forms a novel face-to-face dimer in which the two active sites are close to each other. Strikingly, the distance separating the two active sites is approximately 20 ?, a distance that perfectly matches a 5-base pair interval. Based on these data, we propose a model for the interaction of integrase with its target DNA, which is also supported by many published biochemical data. Our results provide important clues for designing new inhibitors against HIV-1.

Keywords

bovine immunodeficiency virus / integrase / catalytic core domain / crystal structure / dimerization

Cite this article

Download citation ▾
Xue Yao, Shasha Fang, Wentao Qiao, Yunqi Geng, Yuequan Shen. Crystal structures of catalytic core domain of BIV integrase: implications for the interaction between integrase and target DNA. Prot Cell, 2010, 1(4): 363‒370 https://doi.org/10.1007/s13238-010-0047-5

References

[1] Avidan, O., and Hizi, A. (2008). Expression and characterization of the integrase of bovine immunodeficiency virus. Virology 371, 309-321 .10.1016/j.virol.2007.09.014
[2] Berthoux, L., Sebastian, S., Muesing, M.A., and Luban, J. (2007). The role of lysine 186 in HIV-1 integrase multimerization. Virology 364, 227-236 .10.1016/j.virol.2007.02.029
[3] Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N.S., . (1998). Crystallography & NMR system: a new software suite for macro-molecular structure determination. Acta Crystallogr. Sect D: Biol Crystallogr 54, 905-921 .10.1107/S0907444998003254
[4] Ceccherini-Silberstein, F., Malet, I., D’Arrigo, R., Antinori, A., Marcelin, A.G., and Perno, C.F. (2009). Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev 11, 17-29 .
[5] Cherepanov, P. (2007). LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res 35, 113-124 .10.1093/nar/gkl885
[6] Cherepanov, P., Maertens, G., Proost, P., Devreese, B., Van Beeumen, J., Engelborghs, Y., De Clercq, E., and Debyser, Z. (2003). HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278, 372-381 .10.1074/jbc.M209278200
[7] Cherepanov, P., Ambrosio, A.L., Rahman, S., Ellenberger, T., and Engelman, A. (2005). Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102, 17308-17313 .10.1073/pnas.0506924102
[8] Craigie, R. (2001). HIV integrase, a brief overview from chemistry to therapeutics. J Biol Chem 276, 23213–23216 .10.1074/jbc.R100027200
[9] Czyz, A., Stillmock, K.A., Hazuda, D.J., and Reznikoff, W.S. (2007). Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors. Biochemistry 46, 10776-10789 .10.1021/bi7006542
[10] Davies, D.R., Goryshin, I.Y., Reznikoff, W.S., and Rayment, I. (2000). Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289, 77-85 .10.1126/science.289.5476.77
[11] De Luca, L., Vistoli, G., Pedretti, A., Barreca, M.L., and Chimirri, A. (2005). Molecular dynamics studies of the full-length integrase-DNA complex. Biochem Biophys Res Commun 336, 1010-1016 .10.1016/j.bbrc.2005.08.211
[12] Delelis, O., Carayon, K., Sa?b, A., Deprez, E., and Mouscadet, J.F. (2008). Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 5, 114.10.1186/1742-4690-5-114
[13] Dyda, F., Hickman, A.B., Jenkins, T.M., Engelman, A., Craigie, R., and Davies, D.R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981-1986 .10.1126/science.7801124
[14] Ellison, V., Abrams, H., Roe, T., Lifson, J., and Brown, P. (1990). Human immunodeficiency virus integration in a cell-free system. J Virol 64, 2711-2715 .
[15] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. . Acta Crystallogr, Sect D: Biol Crystallogr 60, 2126-2132 .10.1107/S0907444904019158
[16] Engelman, A., Mizuuchi, K., and Craigie, R. (1991). HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211-1221 .10.1016/0092-8674(91)90297-C
[17] Gao, K., Butler, S.L., and Bushman, F. (2001). Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. EMBO J 20, 3565-3576 .10.1093/emboj/20.13.3565
[18] Goldgur, Y., Dyda, F., Hickman, A.B., Jenkins, T.M., Craigie, R., and Davies, D.R. (1998). Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc Natl Acad Sci USA 95, 9150-9154 .10.1073/pnas.95.16.9150
[19] Greenwald, J., Le, V., Butler, S.L., Bushman, F.D., and Choe, S. (1999). The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry 38, 8892-8898 .10.1021/bi9907173
[20] Hare, S., Di Nunzio, F., Labeja, A., Wang, J., Engelman, A., Cherepanov, P., and Luban, J. (2009). Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog 5, e1000515.10.1371/journal.ppat.1000515
[21] Hayouka, Z., Rosenbluh, J., Levin, A., Loya, S., Lebendiker, M., Veprintsev, D., Kotler, M., Hizi, A., Loyter, A., and Friedler, A. (2007). Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc Natl Acad Sci USA 104, 8316-8321 .10.1073/pnas.0700781104
[22] Johnson, A.A., Santos, W., Pais, G.C., Marchand, C., Amin, R., Burke, T.R. Jr, Verdine, G., and Pommier, Y. (2006). Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem 281, 461-467 .10.1074/jbc.M511348200
[23] Lee, B., and Richards, F.M. (1971). The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55, 379-400 .10.1016/0022-2836(71)90324-X
[24] Maxfield, L.F., Fraize, C.D., and Coffin, J.M. (2005). Relationship between retroviral DNA-integration-site selection and host cell transcription. Proc Natl Acad Sci USA 102, 1436-1441 .10.1073/pnas.0409204102
[25] McCoy, A.J. (2007). Solving structures of protein complexes by molecular replacement with phaser. Acta Crystallogr D Biol Crystallogr 63, 32-41 .10.1107/S0907444906045975
[26] Michel, F., Crucifix, C., Granger, F., Eiler, S., Mouscadet, J.F., Korolev, S., Agapkina, J., Ziganshin, R., Gottikh, M., Nazabal, A., . (2009). Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J 28, 980-991 .10.1038/emboj.2009.41
[27] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 .10.1016/S0076-6879(97)76066-X
[28] Ren, G., Gao, K., Bushman, F.D., and Yeager, M. (2007). Single-particle image reconstruction of a tetramer of HIV integrase bound to DNA. J Mol Biol 366, 286-294 .10.1016/j.jmb.2006.11.029
[29] Reznikoff, W.S. (2008). Transposon Tn5. Annu Rev Genet 42, 269-286 .10.1146/annurev.genet.42.110807.091656
[30] Richardson, J.M., Colloms, S.D., Finnegan, D.J., and Walkinshaw, M.D. (2009). Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 138, 1096-1108 .10.1016/j.cell.2009.07.012
[31] Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart, P.H., Hung, L.W., Read, R.J., and Adams, P.D. (2008). Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr 64, 61-69 .
[32] Vandegraaff, N., and Engelman, A. (2007). Molecular mechanisms of HIV integration and therapeutic intervention. Expert Rev Mol Med 9, 1-19 .10.1017/S1462399407000257
[33] Wang, J.Y., Ling, H., Yang, W., and Craigie, R. (2001). Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J 20, 7333-7343 .10.1093/emboj/20.24.7333
[34] Weidhaas, J.B., Angelichio, E.L., Fenner, S., and Coffin, J.M. (2000). Relationship between retroviral DNA integration and gene expression. J Virol 74, 8382-8389 .10.1128/JVI.74.18.8382-8389.2000
[35] Yang, Z.N., Mueser, T.C., Bushman, F.D., and Hyde, C.C. (2000). Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. J Mol Biol 296, 535-548 .10.1006/jmbi.1999.3463
[36] Zhao, Z., McKee, C.J., Kessl, J.J., Santos, W.L., Daigle, J.E., Engelman, A., Verdine, G., and Kvaratskhelia, M. (2008). Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding. J Biol Chem 283, 5632-5641 .10.1074/jbc.M705241200
AI Summary AI Mindmap
PDF(497 KB)

Accesses

Citations

Detail

Sections
Recommended

/