Crystal structure of a novel non-Pfam protein PF2046 solved using low resolution B-factor sharpening and multi-crystal averaging methods

Jing Su1, Yang Li1, Neil Shaw1, Weihong Zhou2, Min Zhang3, Hao Xu4, Bi-Cheng Wang4, Zhi-Jie Liu1()

PDF(380 KB)
PDF(380 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (5) : 453-458. DOI: 10.1007/s13238-010-0045-7
COMMUNICATION
COMMUNICATION

Crystal structure of a novel non-Pfam protein PF2046 solved using low resolution B-factor sharpening and multi-crystal averaging methods

  • Jing Su1, Yang Li1, Neil Shaw1, Weihong Zhou2, Min Zhang3, Hao Xu4, Bi-Cheng Wang4, Zhi-Jie Liu1()
Author information +
History +

Abstract

Sometimes crystals cannot diffract X-rays beyond 3.0 ? resolution due to the intrinsic flexibility associated with the protein. Low resolution diffraction data not only pose a challenge to structure determination, but also hamper interpretation of mechanistic details. Crystals of a 25.6 kDa non-Pfam, hypothetical protein, PF2046, diffracted X-rays to 3.38 ? resolution. A combination of Se-Met derived heavy atom positions with multiple cycles of B-factor sharpening, multi-crystal averaging, restrained refinement followed by manual inspection of electron density and model building resulted in a final model with a R value of 23.5 (Rfree=24.7). The asymmetric unit was large and consisted of six molecules arranged as a homodimer of trimers. Analysis of the structure revealed the presence of a RNA binding domain suggesting a role for PF2046 in the processing of nucleic acids.

Keywords

low resolution diffraction / PF2046 / B-factor sharpening / a homodimer of trimers

Cite this article

Download citation ▾
Jing Su, Yang Li, Neil Shaw, Weihong Zhou, Min Zhang, Hao Xu, Bi-Cheng Wang, Zhi-Jie Liu. Crystal structure of a novel non-Pfam protein PF2046 solved using low resolution B-factor sharpening and multi-crystal averaging methods. Prot Cell, 2010, 1(5): 453‒458 https://doi.org/10.1007/s13238-010-0045-7

References

[1] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948–1954 .
[2] Altschul, S.F., Madden, T.L., Sch?ffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402 .10.1093/nar/25.17.3389
[3] Ariyoshi, M., Vassylyev, D.G., Iwasaki, H., Nakamura, H., Shinagawa, H., and Morikawa, K. (1994). Atomic structure of the RuvC resolvase: a holliday junction-specific endonuclease from E. coli. Cell 78, 1063–1072 .10.1016/0092-8674(94)90280-1
[4] Bass, R.B., Strop, P., Barclay, M., and Rees, D.C. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 .10.1126/science.1077945
[5] Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., . (2004). The Pfam protein families database. Nucleic Acids Res 32, D138–141 .10.1093/nar/gkh121
[6] Berman, H.M., Bhat, T.N., Bourne, P.E., Feng, Z., Gilliland, G., Weissig, H., and Westbrook, J. (2000). The Protein Data Bank and the challenge of structural genomics. Nat Struct Biol 7 Suppl , 957–959 .10.1038/80734
[7] Brenner, S.E. (2000). Target selection for structural genomics. Nat Struct Biol 7, 967–969 .10.1038/80747
[8] Brenner, S.E., and Levitt, M. (2000). Expectations from structural genomics. Protein Sci 9, 197–200 .
[9] Chandonia, J.M., and Brenner, S.E. (2005). Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches. Proteins 58, 166–179 .10.1002/prot.20298
[10] Chen, B., Vogan, E.M., Gong, H., Skehel, J.J., Wiley, D.C., and Harrison, S.C. (2005). Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein. Structure 13, 197–211 .10.1016/j.str.2004.12.004
[11] Cowtan, K.D., and Zhang, K.Y. (1999). Density modification for macromolecular phase improvement. Prog Biophys Mol Biol 72, 245–270 .10.1016/S0079-6107(99)00008-5
[12] Davies, J.F. 2nd, Hostomska, Z., Hostomsky, Z., Jordan, S.R., and Matthews, D.A. (1991). Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252, 88–95 .10.1126/science.1707186
[13] DeLaBarre, B., and Brunger, A.T. (2003). Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Biol 10, 856–863 .10.1038/nsb972
[14] Dyda, F., Hickman, A.B., Jenkins, T.M., Engelman, A., Craigie, R., and Davies, D.R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 .10.1126/science.7801124
[15] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 .10.1107/S0907444904019158
[16] Holm, L., K??ri?inen, S., Rosenstr?m, P., and Schenkel, A. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 .10.1093/bioinformatics/btn507
[17] Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Ikehara, M., Matsuzaki, T., and Morikawa, K. (1990). Three-dimensional structure of ribonuclease H from E. coli. Nature 347, 306–309 .10.1038/347306a0
[18] Laskowski, R.A., Watson, J.D., and Thornton, J.M. (2005). ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33, W89–93 .10.1093/nar/gki414
[19] Lopez, R., Silventoinen, V., Robinson, S., Kibria, A., and Gish, W. (2003). WU-Blast2 server at the European Bioinformatics Institute. Nucleic Acids Res 31, 3795–3798 .10.1093/nar/gkg573
[20] Ohtani, N., Yanagawa, H., Tomita, M., and Itaya, M. (2004). Cleavage of double-stranded RNA by RNase HI from a thermoacidophilic archaeon, Sulfolobus tokodaii 7. Nucleic Acids Res 32, 5809–5819 .10.1093/nar/gkh917
[21] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326 .10.1016/S0076-6879(97)76066-X
[22] Pannu, N.S., Murshudov, G.N., Dodson, E.J., and Read, R.J. (1998). Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr D Biol Crystallogr 54, 1285–1294 .10.1107/S0907444998004119
[23] Pearl, F., Todd, A., Sillitoe, I., Dibley, M., Redfern, O., Lewis, T., Bennett, C., Marsden, R., Grant, A., Lee, D., . (2004). The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33, D247–251 .10.1093/nar/gki024
[24] Perrakis, A., Morris, R., and Lamzin, V.S. (1999). Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6, 458–463 .10.1038/8263
[25] Rayment, I. (1997). Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol 276, 171–179 .10.1016/S0076-6879(97)76058-0
[26] Rice, P., and Mizuuchi, K. (1995). Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82, 209–220 .10.1016/0092-8674(95)90308-9
[27] Shaw, N., Cheng, C., Tempel, W., Chang, J., Ng, J., Wang, X.-Y., Perrett, S., Rose, J., Rao, Z., Wang, B.-C., . (2007). (NZ)CH...O contacts assist crystallization of a ParB-like nuclease. BMC Struct Biol 7, 46–58 .10.1186/1472-6807-7-46
[28] Walter, T.S., Meier, C., Assenberg, R., Au, K.-F., Ren, J., Verma, A., Nettleship, J.E., Owens, R.J., Stuart, D.I., and Grimes, J.M. (2006). Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 .10.1016/j.str.2006.09.005
AI Summary AI Mindmap
PDF(380 KB)

Accesses

Citations

Detail

Sections
Recommended

/