[1] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.-W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination
Acta Crystallogr D 58 , 1948–1954 .
[2] Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J., and Hilgenfeld, R. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain.
EMBO J 21, 3213–3224 .
10.1093/emboj/cdf327[3] Anand, K., Yang, H., Bartlam, M., Rao, Z. & Hilgenfeld, R. (2005). Coronavirus main proteinase: target for antiviral drug therapy. In:
Coronaviruses with special emphasis on first insights concerning SARS, A. Schmidt, M.H. Wolff, and O.F. Weber, ed. (Switzerland, Basel; Birkhauser Verlag). pp. 173–199 .
10.1007/3-7643-7339-3_9[4] Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., and Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs.
Science 300, 1763–1767 .
10.1126/science.1085658[5] Bartlam, M., Yang, H., and Rao, Z. (2005). Structural insights into SARS coronavirus proteins.
Curr Opin Struct Biol 15, 664–672 .
10.1016/j.sbi.2005.10.004[6] Cattaruzza, S., and Perris, R. (2005). Proteoglycan control of cell movement during wound healing and cancer spreading.
Matrix Biol 24, 400–417 .
10.1016/j.matbio.2005.06.005[7] Chan, H.L., Tsui, S.K., and Sung, J.J. (2003). Coronavirus in severe acute respiratory syndrome (SARS).
Trends Mol Med 9, 323–325 .
10.1016/S1471-4914(03)00135-7[8] Chen, S., Chen, L., Tan, J., Chen, J., Du, L., Sun, T., Shen, J., Chen, K., Jiang, H., and Shen, X. (2005). Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations.
J Biol Chem 280, 164–173 .
[9] Chen, H., Wei, P., Huang, C., Tan, L., Liu, Y., and Lai, L. (2006). Only one protomer is active in the dimer of SARS 3C-like proteinase.
J Biol Chem 281, 13894–13898 .
10.1074/jbc.M510745200[10] Chen, S., Hu, T., Zhang, J., Chen, J., Chen, K., Ding, J., Jiang, H., and Shen, X. (2008). Mutation of Gly11 on the dimer interface results in the complete crystallographic dimer dissociation of SARS-CoV 3CLpro: Crystal structure with molecular dynamics simulations.
J Biol Chem 283, 554–564 .
10.1074/jbc.M705240200[11] Chen, S., Jonas, F., Chen, C., and Higenfiled, R. (2010). Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.
Protein Cell 1, 59–74 .
10.1007/s13238-010-0011-4[12] Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes.
J Biomol NMR 6, 277–293 .
10.1007/BF00197809[13] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr 60, 2126–2132 .
10.1107/S0907444904019158[14] Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J.,
. (2004). Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase.
J Biol Chem 279, 1637–1642 .
10.1074/jbc.M310875200[15] Graziano, V., McGrath, W.J., DeGruccio, A.M., Dunn, J.J., and Mangel, W.F. (2006a). Enzymatic activity of the SARS coronavirus main proteinase dimer.
FEBS Lett 580, 2577–2583 .
10.1016/j.febslet.2006.04.004[16] Graziano, V., McGrath, W.J., Yang, L., and Mangel, W.F. (2006b). SARS CoV main proteinase: The monomer-dimer equilibrium dissociation constant.
Biochemistry 45, 14632–14641 .
10.1021/bi061746y[17] Gronenborn, A.M. (2009). Protein acrobatics in pairs—dimerization via domain swapping.
Curr Opin Struct Biol 19, 39–49 .
10.1016/j.sbi.2008.12.002[18] Hsu, W.C., Chang, H.C., Chou, C.Y., Tsai, P.J., Lin, P.I., and Chang, G.G. (2005). Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease.
J Biol Chem 280, 22741–22748 .
10.1074/jbc.M502556200[19] Hu, T., Zhang, Y., Li, L., Wang, K., Chen, S., Chen, J., Ding, J., Jiang, H., and Shen, X. (2009). Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure.
Virology 388, 324–334 .
10.1016/j.virol.2009.03.034[20] Ivanov, D., Tsodikov, O.V., Kasanov, J., Ellenberger, T., Wagner, G., and Collins, T. (2007). Domain-swapped dimerization of the HIV-1 capsid C-terminal domain.
Proc Natl Acad Sci U S A 104, 4353–4358 .
10.1073/pnas.0609477104[21] Johnson, B.A., and Blevins, R.A. (1994). NMR View: A computer program for the visualization and analysis of NMR data.
J Biomol NMR 4, 603–614 .
10.1007/BF00404272[22] Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures.
Journal of molecular graphics 14, 51–55 , 29–32 .
10.1016/0263-7855(96)00009-4[23] Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., de Jong, T., van Doornum, G., Lim, W.,
. (2003). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome.
Lancet 362, 263–270 .
10.1016/S0140-6736(03)13967-0[24] Kuo, C.-J., Chi, Y.-H., Hsu, J.T.-A., and Liang, P.-H. (2004). Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate.
Biochem Biophys Res Commun 318, 862–867 .
10.1016/j.bbrc.2004.04.098[25] Laskowski, R., MacArthur, M., Moss, D., and Thornton, J. (1993). PROCHECK: a program to check the stereochemical quality of protein structures.
J Appl Cryst 26, 283–291 .
10.1107/S0021889892009944[26] Lee, T.W., Cherney, M.M., Huitema, C., Liu, J., James, K.E., Powers, J.C., Eltis, L.D., and James, M.N. (2005). Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide.
J Mol Biol 353, 1137–1151 .
10.1016/j.jmb.2005.09.004[27] Leng, Q., and Bentwich, Z. (2003). A novel coronavirus and SARS.
N Engl J Med 349, 709.
10.1056/NEJMc031427[28] Libonati, M., Gotte, G., and Vottariello, F. (2008). A novel biological actions acquired by ribonuclease through oligomerization.
Curr Pharm Biotechnol 9, 200–209 .
10.2174/138920108784567308[29] Lin, P.Y., Chou, C.Y., Chang, H.C., Hsu, W.C., and Chang, G.G. (2008). Correlation between dissociation and catalysis of SARS-CoV main protease.
Arch Biochem Biophys 472, 34–42 .
10.1016/j.abb.2008.01.023[30] Liu, Y., and Eisenberg, D. (2002). 3D domain swapping: as domains continue to swap.
Protein Sci 11, 1285–1299 .
10.1110/ps.0201402[31] Mammen, M., Choi, S.-K., and Whitesides, G.M. (1998). Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors.
Angew Chem Int Ed 37, 2754–2794 .
10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3[32] Marley, J., Lu, M., and Bracken, C. (2001). A method for efficient isotopic labeling of recombinant proteins.
J Biomol NMR 20, 71–75 .
10.1023/A:1011254402785[33] Matthews, B.W. (1968). Solvent content of protein crystals.
J Mol Biol 33, 491–497 .
10.1016/0022-2836(68)90205-2[34] McCoy, A., Grosse-Kunstleve, R., Adams, P., Winn, M., Storoni, L., and Read, R. (2007). Phaser crystallographic software.
J Appl Cryst 40, 658–674 .
10.1107/S0021889807021206[35] Minor, K.H., and Peterson, C.B. (2002). Plasminogen activator inhibitor type 1 promotes the self-association of vitronectin into complexes exhibiting altered incorporation into the extracellular matrix.
J Biol Chem 277, 10337–10345 .
10.1074/jbc.M109564200[36] Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D 53, 240–255 .
10.1107/S0907444996012255[37] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode.
In Macromolecular Crystallography, part A , C.W. Carter Jr., and R.M. Sweet, eds. (Academic Press), pp. 307–326 .
10.1016/S0076-6879(97)76066-X[38] Po-Huang, L. (2006). Characterization and inhibition of SARS-coronavirus main protease.
Curr Top Med Chem 6, 361–176 .
10.2174/156802606776287090[39] Ruthenburg, A.J., Li, H., Patel, D.J., and Allis, C.D. (2007). Multivalent engagement of chromatin modifications by linked binding modules.
Nat Rev Mol Cell Biol 8, 983–994 .
10.1038/nrm2298[40] Shi, J., and Song, J. (2006). The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain.
FEBS J 273, 1035–1045 .
10.1111/j.1742-4658.2006.05130.x[41] Shi, J., Wei, Z., and Song, J. (2004). Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors.
J Biol Chem 279, 24765–24773 .
10.1074/jbc.M311744200[42] Shi, J., Sivaraman, J., and Song, J. (2008). Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease.
J Virol 82, 4620–4629 .
10.1128/JVI.02680-07[43] Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J., and Gorbalenya, A.E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage.
J Mol Biol 331, 991–1004 .
10.1016/S0022-2836(03)00865-9[44] Tan, J., Verschueren, K.H., Anand, K., Shen, J., Yang, M., Xu, Y., Rao, Z., Bigalke, J., Heisen, B., Mesters, J.R.,
. (2005). pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: molecular dynamics simulations and multiple X-ray structure analyses.
J Mol Biol 354, 25–40 .
10.1016/j.jmb.2005.09.012[45] Verschueren, K.H.G., Pumpor, K., Anemüller, S., Chen, S., Mesters, J.R., Hilgenfeld, R., (2008). A structural view of the inactivation of the SARS coronavirus main proteinase by benzotriazole esters.
Chem Biol 15, 597–606 .
10.1016/j.chembiol.2008.04.011[46] Wei, P., Fan, K., Chen, H., Ma, L., Huang, C., Tan, L., Xi, D., Li, C., Liu, Y., Cao, A.,
. (2006). The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.
Biochem Biophys Res Commun 339, 865–872 .
10.1016/j.bbrc.2005.11.102[47] Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L., and Sykes, B.D. (1995). 1H, 13C and 15N chemical shift referencing in biomolecular NMR.
J Biomol NMR 6, 135–140 .
10.1007/BF00211777[48] Xu, T., Ooi, A., Lee, H.C., Wilmouth, R., Liu, D.X., and Lescar, J. (2005). Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer.
Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 964–966 .
10.1107/S1744309105033257[49] Xue, X., Yang, H., Shen, W., Zhao, Q., Li, J., Yang, K., Chen, C., Jin, Y., Bartlam, M., and Rao, Z. (2007). Production of authentic SARS-CoV M(pro) with enhanced activity: application as a novel tag-cleavage endopeptidase for protein overproduction.
J Mol Biol 366, 965–975 .
10.1016/j.jmb.2006.11.073[50] Yamasaki, M., Li, W., Johnson, D.J., and Huntington, J.A. (2008). Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization.
Nature 455, 1255–1258 .
10.1038/nature07394[51] Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H.,
. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor.
Proc Natl Acad Sci U S A 100, 13190–13195 .
10.1073/pnas.1835675100[52] Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J.,
. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases.
PLoS Biol 3, e324.
10.1371/journal.pbio.0030324[53] Yang, H., Bartlam, M., and Rao, Z. (2006). Drug design targeting the main protease, the Achilles' heel of coronaviruses.
Curr Pharm Des 12, 4573–4590 .
10.2174/138161206779010369[54] Zhong, N., Zhang, S., Zou, P., Chen, J., Kang, X., Li, Z., Liang, C., Jin, C., and Xia, B. (2008). Without its N-finger, SARS-CoV main protease can form a novel dimer through its C-terminal domain.
J Virol 82, 4227–4234 .
10.1128/JVI.02612-07[55] Zhong, N., Zhang, S., Xue, F., Kang, X., Zou, P., Chen, J., Liang, C., Rao, Z., Jin, C., Lou, Z.,
. (2009). C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.
Protein Sci 18, 839–844 .