Interaction of the α2A domain of integrin with small collagen fragments

Hans-Christian Siebert1(), Monika Burg-Roderfeld1, Thomas Eckert1, Sabine St?tzel1, Ulrike Kirch1, Tammo Diercks2,3, Martin J. Humphries4, Martin Frank5, Rainer Wechselberger3, Emad Tajkhorshid6, Steffen Oesser7

PDF(749 KB)
PDF(749 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (4) : 393-405. DOI: 10.1007/s13238-010-0038-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Interaction of the α2A domain of integrin with small collagen fragments

  • Hans-Christian Siebert1(), Monika Burg-Roderfeld1, Thomas Eckert1, Sabine St?tzel1, Ulrike Kirch1, Tammo Diercks2,3, Martin J. Humphries4, Martin Frank5, Rainer Wechselberger3, Emad Tajkhorshid6, Steffen Oesser7
Author information +
History +

Abstract

We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of collagen can only be detected for the 42mer triple-helical collagen-like peptide under study (which contains 42 amino acid residues per strand) by solid phase assays as well as by surface plasmon resonance (SPR) measurements. However, changes in NMR signals during titration and characteristic saturation transfer difference (STD) NMR signals are also detectable when α2A is added to a solution of the 21mer single-stranded collagen fragment. Molecular dynamics (MD) simulations employing different sets of force field parameters were applied to study the interaction between triple-helical or single-stranded collagen fragments with α2A. It is remarkable that even single-stranded collagen fragments can form various complexes with α2A showing significant differences in the complex stability with identical ligands. The results of MD simulations are in agreement with the signal alterations in our NMR experiments, which are indicative of the formation of weak complexes between single-stranded collagen and α2A in solution. These results provide useful information concerning possible interactions of α2A with small collagen fragments that are of relevance to the design of novel therapeutic A-domain inhibitors.

Keywords

integrin-collagen interaction / NMR / SPR / AFM / molecular modeling

Cite this article

Download citation ▾
Hans-Christian Siebert, Monika Burg-Roderfeld, Thomas Eckert, Sabine St?tzel, Ulrike Kirch, Tammo Diercks, Martin J. Humphries, Martin Frank, Rainer Wechselberger, Emad Tajkhorshid, Steffen Oesser. Interaction of the α2A domain of integrin with small collagen fragments. Prot Cell, 2010, 1(4): 393‒405 https://doi.org/10.1007/s13238-010-0038-6

References

[1] Bello, A.E., and Oesser, S. (2006). Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin 22, 2221–2232 .10.1185/030079906X148373
[2] Berisio, R., Vitagliano, L., Mazzarella, L., and Zagari, A. (2002). Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)(10)](3). Protein Sci 11, 262–270 .10.1110/ps.32602
[3] Bhunia, A., Vivekanandan, S., Eckert, T., Burg-Roderfeld, M., Wechselberger, R., Romanuka, J., Bachle, D., Kornilov, A.V., von der Lieth, C.W., Jimenez-Barbero, J., . (2010). Why structurally different cyclic peptides can be glycomimetics of the HNK-1 carbohydrate antigen. J Am Chem Soc 132, 96–105 .10.1021/ja904334s
[4] Brooks, B.R., Brooks, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., . (2009). CHARMM: The biomolecular simulation program. J Comput Chem 30, 1545–1614 .10.1002/jcc.21287
[5] Calderwood, D.A., Tuckwell, D.S., and Humphries, M.J. (1995). Specificity of integrin I-domain-ligand binding. Biochem Soc Trans 23, 504S.
[6] Coe, A.P., Askari, J.A., Kline, A.D., Robinson, M.K., Kirby, H., Stephens, P.E., and Humphries, M.J. (2001). Generation of a minimal alpha5beta1 integrin-Fc fragment. J Biol Chem 276, 35854–35866 .10.1074/jbc.M103639200
[7] Darden, T., Perera, L., Li, L., and Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7, R55–60 .10.1016/S0969-2126(99)80033-1
[8] Dickeson, S.K., Walsh, J.J., and Santoro, S.A. (1997). Contributions of the I and EF hand domains to the divalent cation-dependent collagen binding activity of the alpha2beta1 integrin. J Biol Chem 272, 7661–7668 .10.1074/jbc.272.12.7661
[9] Diercks, T., Coles, M., and Kessler, H. (2001). Applications of NMR in drug discovery. Curr Opin Chem Biol 5, 285–291 .10.1016/S1367-5931(00)00204-0
[10] Elliott, J.T., Woodward, J.T., Langenbach, K.J., Tona, A., Jones, P.L., and Plant, A.L. (2005). Vascular smooth muscle cell response on thin films of collagen. Matrix Biol 24, 489–502 .10.1016/j.matbio.2005.07.005
[11] Elliott, J.T., Woodward, J.T., Umarji, A., Mei, Y., and Tona, A. (2007). The effect of surface chemistry on the formation of thin films of native fibrillar collagen. Biomaterials 28, 576–585 .10.1016/j.biomaterials.2006.09.023
[12] Emsley, J., Knight, C.G., Farndale, R.W., and Barnes, M.J. (2004). Structure of the integrin alpha2beta1-binding collagen peptide. J Mol Biol 335, 1019–1028 .10.1016/j.jmb.2003.11.030
[13] Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J., and Liddington, R.C. (2000). Structural basis of collagen recognition by integrin alpha2beta1. Cell 101, 47–56 .10.1016/S0092-8674(00)80622-4
[14] Feller, S.E., Zhang, Y.H., Pastor, R.W., and Brooks, B.R. (1995). Constant-pressure molecular-dynamics simulation—the Langevin Piston Method. J Chem Phys 103, 4613–4621 .10.1063/1.470648
[15] Grzesiak, J.J., and Bouvet, M. (2008). Activation of the alpha2beta1 integrin-mediated malignant phenotype on type I collagen in pancreatic cancer cells by shifts in the concentrations of extracellular Mg2+ and Ca2+. Int J Cancer 122, 2199–2209 .10.1002/ijc.23368
[16] Grzesiak, J.J., and Pierschbacher, M.D. (1995). Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J Clin Invest 95, 227–233 .10.1172/JCI117644
[17] Herr, A.B., and Farndale, R.W. (2009). Structural insights into the interactions between platelet receptors and fibrillar collagen. J Biol Chem 284, 19781–19785 .10.1074/jbc.R109.013219
[18] Huizinga, E.G., Martijn van der Plas, R., Kroon, J., Sixma, J.J., and Gros, P. (1997). Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding. Structure 5, 1147–1156 .10.1016/S0969-2126(97)00266-9
[19] Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J Mol Graph 14, 33–38 , 27–38 .
[20] Humphries, J.D., Askari, J.A., Zhang, X.P., Takada, Y., Humphries, M.J., and Mould, A.P. (2000). Molecular basis of ligand recognition by integrin alpha5beta 1. II. Specificity of arg-gly-Asp binding is determined by Trp157 OF THE alpha subunit. J Biol Chem 275, 20337–20345 .
[21] Humphries, M.J. (2002). Insights into integrin-ligand binding and activation from the first crystal structure. Arthritis Res 4 Suppl 3, S69–78 .10.1186/ar563
[22] Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 .10.1016/S0092-8674(02)00971-6
[23] Ichikawa, O., Osawa, M., Nishida, N., Goshima, N., Nomura, N., and Shimada, I. (2007). Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J 26, 4168–4176 .10.1038/sj.emboj.7601833
[24] Jorgensen, W.L., Chandrasekhar, J., Buckner, J.K., and Madura, J.D. (1986). Computer simulations of organic reactions in solution. Ann N Y Acad Sci 482, 198–209 .10.1111/j.1749-6632.1986.tb20951.x
[25] Kiedzierska, A., Smietana, K., Czepczynska, H., and Otlewski, J. (2007). Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochim Biophys Acta 1774, 1069–1078 .
[26] Kim, J.K., Xu, Y., Xu, X., Keene, D.R., Gurusiddappa, S., Liang, X., Wary, K.K., and Hook, M. (2005). A novel binding site in collagen type III for integrins alpha1beta1 and alpha2beta1. J Biol Chem 280, 32512–32520 .10.1074/jbc.M502431200
[27] Knight, C.G., Morton, L.F., Onley, D.J., Peachey, A.R., Messent, A.J., Smethurst, P.A., Tuckwell, D.S., Farndale, R.W., and Barnes, M.J. (1998). Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. J Biol Chem 273, 33287–33294 .10.1074/jbc.273.50.33287
[28] Leitinger, B., and Hohenester, E. (2007). Mammalian collagen receptors. Matrix Biol 26, 146–155 .10.1016/j.matbio.2006.10.007
[29] Loeser, R.F. (2000). Chondrocyte integrin expression and function. Biorheology 37, 109–116 .
[30] MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., . (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102, 3586–3616 .10.1021/jp973084f
[31] Melacini, G., Bonvin, A.M.J.J., Goodman, M., Boelens, R., and Kaptein, R. (2000). Hydration dynamics of the collagen triple helix by NMR. J Mol Biol 300, 1041–1048 .10.1006/jmbi.2000.3919
[32] Morton, L.F., Peachey, A.R., Knight, C.G., Farndale, R.W., and Barnes, M.J. (1997). The platelet reactivity of synthetic peptides based on the collagen III fragment alpha1(III)CB4. Evidence for an integrin alpha2beta1 recognition site involving residues 522-528 of the alpha1(III) collagen chain. J Biol Chem 272, 11044–11048 .10.1074/jbc.272.17.11044
[33] Moskowitz, R.W. (2000). Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum 30, 87–99 .10.1053/sarh.2000.9622
[34] Nahshol, O., Bronner, V., Notcovich, A., Rubrecht, L., Laune, D., and Bravman, T. (2008). Parallel kinetic analysis and affinity determination of hundreds of monoclonal antibodies using the ProteOn XPR36. Anal Biochem 383, 52–60 .10.1016/j.ab.2008.08.017
[35] Nishida, N., Sumikawa, H., Sakakura, M., Shimba, N., Takahashi, H., Terasawa, H., Suzuki, E., and Shimada, I. (2003). Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment. Nat Struct Biol 10, 53–58 .10.1038/nsb876
[36] Oesser, S., Adam, M., Babel, W., and Seifert, J. (1999). Oral administration of (14)C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). J Nutr 129, 1891–1895 .
[37] Oesser, S., and Seifert, J. (2003). Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tissue Res 311, 393–399 .
[38] Persikov, A.V., Ramshaw, J.A., and Brodsky, B. (2005). Prediction of collagen stability from amino acid sequence. J Biol Chem 280, 19343–19349 .10.1074/jbc.M501657200
[39] Plant, A.L., Bhadriraju, K., Spurlin, T.A., and Elliott, J.T. (2009). Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta 1793, 893–902 .10.1016/j.bbamcr.2008.10.012
[40] Romijn, R.A., Bouma, B., Wuyster, W., Gros, P., Kroon, J., Sixma, J.J., and Huizinga, E.G. (2001). Identification of the collagen-binding site of the von Willebrand factor A3-domain. J Biol Chem 276, 9985–9991 .10.1074/jbc.M006548200
[41] Siebert, H.C., Adar, R., Arango, R., Burchert, M., Kaltner, H., Kayser, G., Tajkhorshid, E., VonderLieth, C.W., Kaptein, R., Sharon, N., . (1997). Involvement of laser photo-CIDNP(chemically induced dynamic nuclear polarization)-reactive amino acid side chains in ligand binding by galactoside-specific lectins in solution. Eur J Biochem 249, 27–38 .10.1111/j.1432-1033.1997.00027.x
[42] Siebert, H.C., Andre, S., Lu, S.Y., Frank, M., Kaltner, H., van Kuik, J.A., Korchagina, E.Y., Bovin, N., Tajkhorshid, E., Kaptein, R., . (2003). Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry 42, 14762–14773 .10.1021/bi035477c
[43] Siebert, H.C., Born, K., Andre, S., Frank, M., Kaltner, H., von der Lieth, C.W., Heck, A.J., Jimenez-Barbero, J., Kopitz, J., and Gabius, H.J. (2005). Carbohydrate chain of ganglioside GM1 as a ligand: identification of the binding strategies of three 15 mer peptides and their divergence from the binding modes of growth-regulatory galectin-1 and cholera toxin. Chemistry 12, 388–402 .
[44] Siebert, H.C., Lu, S.Y., Frank, M., Kramer, J., Wechselberger, R., Joosten, J., Andre, S., Rittenhouse-Olson, K., Roy, R., von der Lieth, C.W., . (2002). Analysis of protein-carbohydrate interaction at the lower size limit of the protein part (15-mer peptide) by NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling. Biochemistry 41, 9707–9717 .10.1021/bi025891x
[45] Siebert, H.C., Lu, S.Y., Wechselberger, R., Born, K., Eckert, T., Liang, S., von der Lieth, C.W., Jimenez-Barbero, J., Schauer, R., Vliegenthart, J.F., . (2009). A lectin from the Chinese bird-hunting spider binds sialic acids. Carbohydr Res 344, 1515–1525 .10.1016/j.carres.2009.06.002
[46] Siebert, H.C., Tajkhorshid, E., and Dabrowski, J. (2001). Barrier to rotation around the C-sp(2)-C-sp(2) bond of the ketoaldehyde enol ether MeC(O)CH=CH-OEt as determined by C-13 NMR and ab initio calculations. J Phys Chem A 105, 8488–8494 .10.1021/jp004476g
[47] Siljander, P.R., Hamaia, S., Peachey, A.R., Slatter, D.A., Smethurst, P.A., Ouwehand, W.H., Knight, C.G., and Farndale, R.W. (2004). Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens. J Biol Chem 279, 47763–47772 .10.1074/jbc.M404685200
[48] Sweeney, S.M., Orgel, J.P., Fertala, A., McAuliffe, J.D., Turner, K.R., Di Lullo, G.A., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., . (2008). Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283, 21187–21197 .10.1074/jbc.M709319200
[49] Valdramidou, D., Humphries, M.J., and Mould, A.P. (2008). Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1. J Biol Chem 283, 32704–32714 .10.1074/jbc.M802066200
[50] van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J. (2005). GROMACS: fast, flexible, and free. J Comput Chem 26, 1701–1718 .10.1002/jcc.20291
[51] van Lenthe, J.H., den Boer, D.H.W., Havenith, R.W.A., Schauer, R., and Siebert, H.C. (2004). Ab initio calculations on various sialic acids provide valuable information about sialic acid-specific enzymes. J Mol Struct (Theochem) 677, 29–37 .10.1016/j.theochem.2004.01.013
[52] Vogel, W.F., Abdulhussein, R., and Ford, C.E. (2006). Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18, 1108–1116 .10.1016/j.cellsig.2006.02.012
[53] Wu, A.M., Singh, T., Liu, J.H., Krzeminski, M., Russwurm, R., Siebert, H.C., Bonvin, A.M., Andre, S., and Gabius, H.J. (2007). Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. Glycobiology 17, 165–184 .10.1093/glycob/cwl062
[54] Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 .10.1126/science.1069040
AI Summary AI Mindmap
PDF(749 KB)

Accesses

Citations

Detail

Sections
Recommended

/