Is Collum Femoris Preserving Stem (CFP) an Epiphyseal-Stabilized Prosthesis? A Long-Term Single-Center Series Follow Up of 705 Cases

Yansong Liu , Yongbo Ma , Xuzhuang Ding , Jiangqi Chang , Mengnan Li , Tao Wu

Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (8) : 2385 -2396.

PDF
Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (8) : 2385 -2396. DOI: 10.1111/os.70109
CLINICAL ARTICLE

Is Collum Femoris Preserving Stem (CFP) an Epiphyseal-Stabilized Prosthesis? A Long-Term Single-Center Series Follow Up of 705 Cases

Author information +
History +
PDF

Abstract

Background: The global increase in total hip arthroplasty (THA) has led to widespread use of cementless femoral stems. The Collum Femoris Preserving (CFP) stem, initially designed as an epiphyseal-stabilized prosthesis, aims to preserve proximal bone and reduce stress shielding. However, long-term observations have revealed unexpected proximal bone resorption and distal sclerosis, challenging this classification. This study aims to reassess the fixation pattern and long-term complications of CFP stems to inform clinical decision-making.

Methods: Between 2006 and 2012, 497 patients (705 hips) were included. The primary outcomes included prosthesis survival, periprosthetic bone remodeling, and clinical outcomes, assessed using the Harris Hip Score (HHS). Kaplan–Meier survival analysis was performed, with endpoints of prosthesis loosening and reoperation. Radiographic data were analyzed to evaluate periprosthetic bone remodeling.

Results: A total of 497 patients (705 hips) with a mean follow-up of 10.4 years were included. The long-term survival rate of the CFP stem was 95.32%, with a 97.2% survival rate for aseptic loosening and 95.5% for reoperation. Complications included 2.84% aseptic loosening, 0.99% infection, 0.99% periprosthetic fractures, 0.57% dislocation, and 1.42% heterotopic ossification. The CFP stem, which has not shown signs of aseptic loosening, exhibits radiographic features characteristic of a distal-stabilized prosthesis.

Conclusion: The long-term survival rate of the CFP prosthesis was 95.32%. Radiographic findings indicate that the CFP prosthesis should be considered a distal-stabilized prosthesis rather than the traditionally regarded epiphyseal-stabilized prosthesis.

Keywords

CFP stem prosthesis / distal-stabilized / retrospective / total hip arthroplasty

Cite this article

Download citation ▾
Yansong Liu, Yongbo Ma, Xuzhuang Ding, Jiangqi Chang, Mengnan Li, Tao Wu. Is Collum Femoris Preserving Stem (CFP) an Epiphyseal-Stabilized Prosthesis? A Long-Term Single-Center Series Follow Up of 705 Cases. Orthopaedic Surgery, 2025, 17(8): 2385-2396 DOI:10.1111/os.70109

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Adelani, J. A. Keeney, A. Palisch, S. A. Fowler, and J. C. Clohisy, “Has Total Hip Arthroplasty in Patients 30 Years or Younger Improved? A Systematic Review,” Clinical Orthopaedics and Related Research 471, no. 8 (2013): 2595-2601, https://doi.org/10.1007/s11999-013-2975-x.

[2]

B. Reider, “Fostering Compliance,” American Journal of Sports Medicine 51, no. 1 (2023): 13-15, https://doi.org/10.1177/03635465221139191.

[3]

F. Pipino, “CFP Prosthetic Stem in Mini-Invasive Total Hip Arthroplasty,” Journal of Orthopaedics and Traumatology 5, no. 3 (2004): 165-171, https://doi.org/10.1007/s10195-004-0065-2.

[4]

I. D. Learmonth, “Conservative Stems in Total Hip Replacement,” Hip International 19, no. 3 (2009): 195-200, https://doi.org/10.1177/112070000901900301.

[5]

F. Falez, F. Casella, and M. Papalia, “Current Concepts, Classification, and Results in Short Stem Hip Arthroplasty,” Orthopedics 38, no. 3 Suppl (2015): S6-S13, https://doi.org/10.3928/01477447-20150215-50.

[6]

M. Nowak, T. E. Nowak, R. Schmidt, R. Forst, A. M. Kress, and L. A. Mueller, “Prospective Study of a Cementless Total Hip Arthroplasty With a Collum Femoris Preserving Stem and a Trabeculae Oriented Pressfit Cup: Minimum 6-Year Follow-Up,” Archives of Orthopaedic and Trauma Surgery 131, no. 4 (2010): 549-555, https://doi.org/10.1007/s00402-010-1189-x.

[7]

J. van Oldenrijk, J. Molleman, M. Klaver, R. W. Poolman, and D. Haverkamp, “Revision Rate After Short-Stem Total Hip Arthroplasty: A Systematic Review of 49 Studies,” Acta Orthopaedica 85, no. 3 (2014): 250-258, https://doi.org/10.3109/17453674.2014.908343.

[8]

K. Kobayashi, K. Kidera, M. Itose, T. Motokawa, K. Chiba, and M. Osaki, “Higher Incidence of Aseptic Loosening Caused by a Lower Canal Filling Ratio With a Modified Modular Stem in Total Hip Arthroplasty,” Journal of Orthopaedic Surgery and Research 15, no. 1 (2020): 568, https://doi.org/10.1186/s13018-020-02101-x.

[9]

R. M. Patel, M. C. Smith, C. C. Woodward, and S. D. Stulberg, “Stable Fixation of Short-Stem Femoral Implants in Patients 70 Years and Older,” Clinical Orthopaedics and Related Research 470, no. 2 (2012): 442-449, https://doi.org/10.1007/s11999-011-2063-z.

[10]

R. G. Molli, A. V. Lombardi, K. R. Berend, J. B. Adams, and M. A. Sneller, “A Short Tapered Stem Reduces Intraoperative Complications in Primary Total Hip Arthroplasty,” Clinical Orthopaedics and Related Research 470, no. 2 (2012): 450-461, https://doi.org/10.1007/s11999-011-2068-7.

[11]

R. M. Patel and S. D. Stulberg, “The Rationale for Short Uncemented Stems in Total Hip Arthroplasty,” Orthopedic Clinics of North America 45, no. 1 (2014): 19-31, https://doi.org/10.1016/j.ocl.2013.08.007.

[12]

S. D. Stulberg and R. M. Patel, “The Short Stem: Promises and Pitfalls,” Bone & Joint Journal 95-B, no. 11 Suppl A (2013): 57-62, https://doi.org/10.1302/0301-620X.95B11.32936.

[13]

R. M. Patel, W. M. Lo, M. A. Cayo, M. M. Dolan, and S. D. Stulberg, “Stable, Dependable Fixation of Short-Stem Femoral Implants at 5 Years,” Orthopedics 36, no. 3 (2013): e301-e307, https://doi.org/10.3928/01477447-20130222-18.

[14]

F. Falez, F. Casella, G. Panegrossi, F. Favetti, and C. Barresi, “Perspectives on Metaphyseal Conservative Stems,” Journal of Orthopaedics and Traumatology 9, no. 1 (2008): 49-54, https://doi.org/10.1007/s10195-008-0105-4.

[15]

M. Jasty, R. Krushell, E. Zalenski, D. O'Connor, R. Sedlacek, and W. Harris, “The Contribution of the Nonporous Distal Stem to the Stability of Proximally Porous-Coated Canine Femoral Components,” Journal of Arthroplasty 8, no. 1 (1993): 33-41, https://doi.org/10.1016/s0883-5403(06)80105-1.

[16]

M. Pons, “Learning Curve and Short-Term Results With a Short-Stem CFP System,” Hip International 20, no. Suppl 7 (2010): S52-S57, https://doi.org/10.5301/HIP.2010.4443.

[17]

D. Briem, M. Schneider, N. Bogner, et al., “Mid-Term Results of 155 Patients Treated With a Collum Femoris Preserving (CFP) Short Stem Prosthesis,” International Orthopaedics 35, no. 5 (2011): 655-660, https://doi.org/10.1007/s00264-010-1020-x.

[18]

J. Hutt, Z. Harb, I. Gill, F. Kashif, J. Miller, and M. Dodd, “Ten Year Results of the Collum Femoris Preserving Total Hip Replacement: A Prospective Cohort Study of Seventy Five Patients,” International Orthopaedics 38, no. 5 (2014): 917-922, https://doi.org/10.1007/s00264-013-2212-y.

[19]

H. Wacha, G. Domsel, and E. Herrmann, “Long-Term Follow-Up of 1217 Consecutive Short-Stem Total Hip Arthroplasty (THA): A Retrospective Single-Center Experience,” European Journal of Trauma and Emergency Surgery 44, no. 3 (2018): 457-469, https://doi.org/10.1007/s00068-017-0895-2.

[20]

P. Piakong, M. Pahl, G. Delgado, et al., “Twenty-Year Results of a Neck-Preserving Short-Stem Prosthesis in Primary Total Hip Arthroplasty,” Archives of Orthopaedic and Trauma Surgery 143, no. 6 (2023): 3481-3486, https://doi.org/10.1007/s00402-022-04556-5.

[21]

M. Formica, L. Cavagnaro, M. Basso, A. Zanirato, A. Palermo, and L. Felli, “What Is the Fate of the Neck After a Collum Femoris Preserving Prosthesis? A Nineteen Years Single Center Experience,” International Orthopaedics 41, no. 7 (2017): 1329-1335, https://doi.org/10.1007/s00264-016-3350-9.

[22]

M. Loppini and G. Grappiolo, “Uncemented Short Stems in Primary Total Hip Arthroplasty: The State of the Art,” EFORT Open Reviews 3, no. 5 (2018): 149-159, https://doi.org/10.1302/2058-5241.3.170052.

[23]

F. Migliorini, A. Driessen, G. Colarossi, et al., “Short Stems for Total Hip Replacement Among Middle-Aged Patients,” International Orthopaedics 44, no. 5 (2020): 847-855, https://doi.org/10.1007/s00264-020-04516-x.

[24]

S. Sivaloganathan, C. Maillot, C. Harman, L. Villet, and C. Rivière, “Neck-Sparing Short Femoral Stems: A Meta-Analysis,” Orthopaedics & Traumatology, Surgery & Research 106, no. 8 (2020): 1481-1494, https://doi.org/10.1016/j.otsr.2020.05.004.

[25]

G. I. Drosos and P. Touzopoulos, “Short Stems in Total Hip Replacement: Evidence on Primary Stability According to the Stem Type,” Hip International 29, no. 2 (2019): 118-127, https://doi.org/10.1177/1120700018811811.

[26]

W. H. Harris, “Traumatic Arthritis of the Hip After Dislocation and Acetabular Fractures: Treatment by Mold Arthroplasty. An End-Result Study Using a New Method of Result Evaluation,” Journal of Bone and Joint Surgery. American Volume 51, no. 4 (1969): 737-755.

[27]

D. O. Kendoff, M. Citak, C. C. Egidy, P. F. O'Loughlin, and T. Gehrke, “Eleven-Year Results of the Anatomic Coated CFP Stem in Primary Total Hip Arthroplasty,” Journal of Arthroplasty 28, no. 6 (2013): 1047-1051, https://doi.org/10.1016/j.arth.2012.10.013.

[28]

D. Berlanga-de-Mingo and M. Pons-Cabrafiga, “Results of the Short Neck-Retaining Stem Prostheses CFP With a Minimum Follow-Up of 10 Years,” Revista Española de Cirugía Ortopédica y Traumatología 66, no. 3 (2022): 176-181, https://doi.org/10.1016/j.recot.2021.09.007.

[29]

A. Nyström, D. Kiritopoulos, H. Mallmin, and S. Lazarinis, “Continuous Periprosthetic Bone Loss but Preserved Stability for a Collum Femoris-Preserving Stem: Follow-Up of a Prospective Cohort Study of 21 Patients With Dual-Energy X-Ray Absorptiometry and Radiostereometric Analysis With Minimum 8 Years of Follow-Up,” Acta Orthopaedica 93 (2022): 206-211, https://doi.org/10.2340/17453674.2021.1080.

[30]

H. Fahlbusch, M. Budin, A. Volk, et al., “Long-Term Outcomes of Total Hip Arthroplasty in Patients With Developmental Dysplasia of the Hip: A Minimum 21-Year Follow-Up,” Archives of Orthopaedic and Trauma Surgery 143, no. 11 (2023): 6609-6616, https://doi.org/10.1007/s00402-023-04970-3.

[31]

K. Rilby, E. Nauclér, M. Mohaddes, and J. Kärrholm, “No Difference in Outcome or Migration but Greater Loss of Bone Mineral Density With the Collum Femoris Preserving Stem Compared With the Corail Stem: A Randomized Controlled Trial With Five-Year Follow-Up,” Bone & Joint Journal 104-B, no. 5 (2022): 581-588, https://doi.org/10.1302/0301-620X.104B5.BJJ-2021-1539.R1.

[32]

D. Capón-García, A. López-Pardo, and M. T. Alves-Pérez, “Causes for Revision Surgery in Total Hip Replacement: A Retrospective Epidemiological Analysis,” Revista Española de Cirugía Ortopédica y Traumatología 60, no. 3 (2016): 160-166, https://doi.org/10.1016/j.recot.2016.01.002.

[33]

H. T. Aro, J. J. Alm, N. Moritz, T. J. Mäkinen, and P. Lankinen, “Low BMD Affects Initial Stability and Delays Stem Osseointegration in Cementless Total Hip Arthroplasty in Women: A 2-Year RSA Study of 39 Patients,” Acta Orthopaedica 83, no. 2 (2012): 107-114, https://doi.org/10.3109/17453674.2012.678798.

[34]

M. Synder, P. Kozłowski, M. Marciniak, and T. Dorman, “Revision Hip Arthroplasty in Aseptic Loosening of Total Hip Replacement,” Ortopedia, Traumatologia, Rehabilitacja 3, no. 1 (2001): 34-37.

[35]

P. F. Bergin, J. B. Noveau, J. S. Jelinek, and R. M. Henshaw, “Aseptic Loosening Rates in Distal Femoral Endoprostheses: Does Stem Size Matter?,” Clinical Orthopaedics and Related Research 470, no. 3 (2012): 743-750, https://doi.org/10.1007/s11999-011-2081-x.

[36]

J. G. DeLee and J. Charnley, “Radiological Demarcation of Cemented Sockets in Total Hip Replacement,” Clinical Orthopaedics and Related Research 121 (1976): 20-32.

[37]

T. A. Gruen, G. M. McNeice, and H. C. Amstutz, “Modes of Failure of Cemented Stem-Type Femoral Components: A Radiographic Analysis of Loosening,” Clinical Orthopaedics and Related Research 141 (1979): 17-27.

[38]

C. Wang, Y. Wang, H. Meng, et al., “Microstructure and Nanomechanical Properties of Single Trabecular Bone in Different Regions of Osteonecrosis of the Femoral Head,” Journal of Nanoscience and Nanotechnology 16, no. 3 (2016): 2264-2269, https://doi.org/10.1166/jnn.2016.10943.

[39]

R. Pourzal, H. J. Lundberg, D. J. Hall, and J. J. Jacobs, “What Factors Drive Taper Corrosion?,” Journal of Arthroplasty 33, no. 9 (2018): 2707-2711, https://doi.org/10.1016/j.arth.2018.03.055.

[40]

Y. Abu-Amer, I. Darwech, and J. C. Clohisy, “Aseptic Loosening of Total Joint Replacements: Mechanisms Underlying Osteolysis and Potential Therapies,” Arthritis Research & Therapy 9, no. Suppl 1 (2007): S6, https://doi.org/10.1186/ar2170.

[41]

B. Schoof, O. Jakobs, S. Schmidl, et al., “Fungal Periprosthetic Joint Infection of the Hip: A Systematic Review,” Orthopedic Reviews 7, no. 1 (2015): 5748, https://doi.org/10.4081/or.2015.5748.

[42]

V. Lauvrak and I. N. Norderhaug, “Infection Preventive Interventions in Primary Total Hip Replacements” (2011).

[43]

G. Chieffo, S. Corsia, G. Rougereau, et al., “Six-Week Antibiotic Therapy After One-Stage Replacement Arthroplasty for Hip and Knee Periprosthetic Joint Infection,” Médecine et Maladies Infectieuses 50, no. 7 (2020): 567-574, https://doi.org/10.1016/j.medmal.2020.03.003.

[44]

S. H. Baek, “Identification and Preoperative Optimization of Risk Factors to Prevent Periprosthetic Joint Infection,” World Journal of Orthopedics 5, no. 3 (2014): 362-367, https://doi.org/10.5312/wjo.v5.i3.362.

[45]

P. N. Streubel, “Mortality After Periprosthetic Femur Fractures,” Journal of Knee Surgery 26, no. 1 (2013): 27-30, https://doi.org/10.1055/s-0033-1333905.

[46]

D. J. Berry, “Epidemiology: Hip and Knee,” Orthopedic Clinics of North America 30, no. 2 (1999): 183-190, https://doi.org/10.1016/s0030-5898(05)70073-0.

[47]

D. De Meo, B. Zucchi, V. Castagna, et al., “Validity and Reliability of the Unified Classification System Applied to Periprosthetic Femur Fractures: A Comparison With the Vancouver System,” Current Medical Research and Opinion 36, no. 8 (2020): 1375-1381, https://doi.org/10.1080/03007995.2020.1776232.

[48]

L. Froberg, A. Troelsen, and M. Brix, “Periprosthetic Vancouver Type B1 and C Fractures Treated by Locking-Plate Osteosynthesis: Fracture Union and Reoperations in 60 Consecutive Fractures,” Acta Orthopaedica 83, no. 6 (2012): 648-652, https://doi.org/10.3109/17453674.2012.747925.

[49]

H. Lindahl, G. Garellick, H. Regnér, P. Herberts, and H. Malchau, “Three Hundred and Twenty-One Periprosthetic Femoral Fractures,” Journal of Bone and Joint Surgery. American Volume 88, no. 6 (2006): 1215-1222, https://doi.org/10.2106/JBJS.E.00457.

[50]

B. Musielak, M. Idzior, and M. Jóźwiak, “Evolution of the Term and Definition of Dysplasia of the Hip: A Review of the Literature,” Archives of Medical Science 11, no. 5 (2015): 1052-1057, https://doi.org/10.5114/aoms.2015.52734.

[51]

L. Gong, Y. Y. Zhang, N. Yang, H. J. Qian, L. K. Zhang, and M. S. Tan, “Raloxifene Prevents Early Periprosthetic Bone Loss for Postmenopausal Women After Uncemented Total Hip Arthroplasty: A Randomized Placebo-Controlled Clinical Trial,” Orthopaedic Surgery 12, no. 4 (2020): 1074-1083, https://doi.org/10.1111/os.12696.

[52]

N. Binkley, B. Nickel, and P. A. Anderson, “Periprosthetic Fractures: An Unrecognized Osteoporosis Crisis,” Osteoporosis International 34, no. 6 (2023): 1055-1064, https://doi.org/10.1007/s00198-023-06695-w.

[53]

M. Bhandari, T. A. Einhorn, G. Guyatt, et al., “Total Hip Arthroplasty or Hemiarthroplasty for Hip Fracture,” New England Journal of Medicine 381, no. 23 (2019): 2199-2208, https://doi.org/10.1056/NEJMoa1906190.

[54]

P. Shahbazi, A. H. Jalilvand, A. Ghaseminejad-Raeini, et al., “Risk Factors for Dislocation Following Total Hip Arthroplasty in Developmental Dysplasia of the Hip: A Systematic Review and Meta-Analysis,” International Orthopaedics 47, no. 12 (2023): 3063-3075, https://doi.org/10.1007/s00264-023-05949-w.

[55]

M. Dudda, A. Gueleryuez, E. Gautier, A. Busato, and C. Roeder, “Risk Factors for Early Dislocation After Total Hip Arthroplasty: A Matched Case-Control Study,” Journal of Orthopaedic Surgery 18, no. 2 (2010): 179-183, https://doi.org/10.1177/230949901001800209.

[56]

E. B. Gausden, H. S. Parhar, J. E. Popper, P. K. Sculco, and B. N. M. Rush, “Risk Factors for Early Dislocation Following Primary Elective Total Hip Arthroplasty,” Journal of Arthroplasty 33, no. 5 (2018): 1567-1571.e2, https://doi.org/10.1016/j.arth.2017.12.034.

[57]

P. Langan and C. A. Weiss, “Femoral Stem Failure and Ectopic Bone Formation in Total Hip Arthroplasty: Four Case Reports,” Clinical Orthopaedics and Related Research 146 (1980): 205-208.

[58]

U. Anil, V. Singh, and R. Schwarzkopf, “Diagnosis and Detection of Subtle Aseptic Loosening in Total Hip Arthroplasty,” Journal of Arthroplasty 37, no. 8 (2022): 1494-1500, https://doi.org/10.1016/j.arth.2022.02.060.

[59]

F. Pipino and L. Molfetta, “Femoral Neck Preservation in Total Hip Replacement,” Italian Journal of Orthopaedics and Traumatology 19, no. 1 (1993): 5-12.

[60]

F. Biggi, F. Franchin, R. Lovato, and F. Pipino, “DEXA Evaluation of Total Hip Arthroplasty With Neck-Preserving Technique: 4-Year Follow-Up,” Journal of Orthopaedics and Traumatology 5, no. 3 (2004): 156-159, https://doi.org/10.1007/s10195-004-0063-4.

[61]

L. Carlson, B. Albrektsson, and M. A. Freeman, “Femoral Neck Retention in Hip Arthroplasty. A Cadaver Study of Mechanical Effects,” Acta Orthopaedica Scandinavica 59, no. 1 (1988): 6-8, https://doi.org/10.3109/17453678809149333.

[62]

S. M. Röhrl, M. G. Li, E. Pedersen, G. Ullmark, and B. Nivbrant, “Migration Pattern of a Short Femoral Neck Preserving Stem,” Clinical Orthopaedics and Related Research 448 (2006): 73-78, https://doi.org/10.1097/01.blo.0000224000.87517.4c.

[63]

S. Journeaux, D. Morgan, and W. Donnelly, “The Medium-Term Results of a Cemented Freeman Femoral Neck-Retaining Prosthesis,” Journal of Bone and Joint Surgery 82-B B, no. 2 (2000): 188-191, https://doi.org/10.1302/0301-620X.82B2.0820188.

[64]

L. A. Whiteside, S. E. White, and D. S. McCarthy, “Effect of Neck Resection on Torsional Stability of Cementless Total Hip Replacement,” American Journal of Orthopedics (Belle Mead, N.J.) 24, no. 10 (1995): 766-770.

[65]

Y. H. Kim, J. S. Kim, and S. H. Cho, “Strain Distribution in the Proximal Human Femur. An In Vitro Comparison in the Intact Femur and After Insertion of Reference and Experimental Femoral Stems,” Journal of Bone and Joint Surgery 83, no. 2 (2001): 295-301, https://doi.org/10.1302/0301-620X.83B2.10108.

[66]

Y. Liu, W. X. Wei, Y. Zeng, J. Ma, J. Yang, and B. Shen, “Comparison of Femoral Bone Mineral Density Changes Around 3 Common Designs of Cementless Stems After Total Hip Arthroplasty—A Retrospective Cohort Study,” Orthopaedic Surgery 14, no. 6 (2022): 1059-1070, https://doi.org/10.1111/os.13265.

[67]

G. B. Reddy, S. Haziza, D. S. Constantinescu, et al., “Survivorship and Outcomes of Femoral Neck Preserving Stems in Primary Total Hip Arthroplasty,” Journal of Arthroplasty 37, no. 8 (2022): 1606-1611, https://doi.org/10.1016/j.arth.2022.03.080.

[68]

F. Agathangelidis, A. Boutsiadis, and G. Petsatodis, “Pedestal Sign in Cementless Total Hip Replacement,” Hippokratia 18, no. 4 (2014): 378.

RIGHTS & PERMISSIONS

2025 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/