Introduction: Acute lateral ankle sprain (LAS) frequently results in persistent functional limitations. Understanding changes in calf muscle and Achilles tendon (AT) stiffness after LAS may shed light on mechanisms underlying impaired function.
Objective: To investigate the effects of acute LAS on the mechanical properties of the calf muscles and the Achilles tendon, ankle function, pain, edema, and strength.
Methods: This controlled observational study was conducted from August 2023 to January 2025. Fourteen participants with acute LAS and 14 healthy controls were evaluated twice, 6 weeks apart. Shear wave elastography (SWE) assessed the stiffness of the triceps surae and AT. Ankle function, pain, and edema were evaluated using the Foot and Ankle Outcome Score, Visual Analog Scale, and figure-of-eight method. Plantar flexion strength was measured via isometric dynamometry.
Results: No significant differences in stiffness were found between or within groups (soleus: p = 0.932; MG: p = 0.760; LG: p = 0.800; AT: p = 0.070), although a time effect (p = 0.005, η2 = 0.269) indicated a general increase in AT stiffness over time (MD = −0.72, p = 0.05, d = 2.86). At baseline, the LAS group exhibited reduced ankle function (MD = 3.43, p < 0.001, d = 2.20), increased pain (MD = 1.88, p < 0.001, d = 1.86), and greater edema (MD = −51.27, p < 0.001, d = −3.58). Over time, improvements were noted in function (MD = −37.04, p < 0.001, d = 2.27), pain (MD = 2.66, p < 0.001, d = −1.31), and edema (MD = 1.07, p = 0.014, d = −0.95), but ankle function remained lower in the LAS group at follow-up (MD = −14.17, p < 0.001, d = −1.79). For plantar flexion strength, no group × time interaction was found (p = 0.745), but a group effect indicated lower peak torque in the LAS group (MD = −32.05, p = 0.012, d = −3.82). A time effect (p < 0.001, η2 = 0.622) showed increased torque across both groups (MD = −18.74, p < 0.001, d = 3.07).
Conclusion: LAS reduces ankle function and leads to pain and edema but does not induce notable changes in calf muscle or AT stiffness within 6 weeks.
| [1] |
D. Ivins, “Acute Ankle Sprain: An Update,” American Family Physician 74, no. 10 (2006): 1714-1720.
|
| [2] |
M. M. Herzog, Z. Y. Kerr, S. W. Marshall, and E. A. Wikstrom, “Epidemiology of Ankle Sprains and Chronic Ankle Instability,” Journal of Athletic Training 54, no. 6 (2019): 603-610, https://doi.org/10.4085/1062-6050-447-17.
|
| [3] |
C. Doherty, E. Delahunt, B. Caulfield, J. Hertel, J. Ryan, and C. Bleakley, “The Incidence and Prevalence of Ankle Sprain Injury: A Systematic Review and meta-Analysis of Prospective Epidemiological Studies,” Sports Medicine 44, no. 1 (2014): 123-140.
|
| [4] |
M. H. Nabian, S. A. Zadegan, L. O. Zanjani, and S. R. Mehrpour, “Epidemiology of Joint Dislocations and Ligamentous/Tendinous Injuries Among 2,700 Patients: Five-Year Trend of a Tertiary Center in Iran,” Archives of Bone and Joint Surgery 5, no. 6 (2017): 426-434.
|
| [5] |
R. L. Martin, T. E. Davenport, J. J. Fraser, et al., “Ankle Stability and Movement Coordination Impairments: Lateral Ankle Ligament Sprains Revision 2021,” Journal of Orthopaedic and Sports Physical Therapy 51, no. 4 (2021): CPG1-CPG80, https://doi.org/10.2519/jospt.2021.0302.
|
| [6] |
R. M. van Rijn, A. G. Os, R. M. Bernsen, P. A. Luijsterburg, B. W. Koes, and S. M. Bierma-Zeinstra, “What Is the Clinical Course of Acute Ankle Sprains? A Systematic Literature Review,” American Journal of Medicine 121, no. 4 (2008): 324-331, https://doi.org/10.1016/j.amjmed.2007.11.018.
|
| [7] |
H. Mansur, M. de Noronha, R. C. Marqueti, and J. L. Q. Durigan, “Acute Lateral Ankle Sprain Alters Muscle and Tendon Properties: Case Series,” Foot and Ankle Surgery 28, no. 3 (2022): 402-408, https://doi.org/10.1016/j.fas.2021.05.008.
|
| [8] |
T. J. Hubbard and C. A. Hicks-Little, “Ankle Ligament Healing After an Acute Ankle Sprain: An Evidence-Based Approach,” Journal of Athletic Training 43, no. 5 (2008): 523-529, https://doi.org/10.4085/1062-6050-43.5.523.
|
| [9] |
P. A. Gribble, C. M. Bleakley, B. M. Caulfield, et al., “Evidence Review for the 2016 International Ankle Consortium Consensus Statement on the Prevalence, Impact and Long-Term Consequences of Lateral Ankle Sprains,” British Journal of Sports Medicine 50, no. 24 (2016): 1496-1505, https://doi.org/10.1136/bjsports-2016-096189.
|
| [10] |
C. C. Hong, K. J. Tan, and J. Calder, “Chronic Lateral Ankle Ligament Instability - Current Evidence and Recent Management Advances,” Journal of Clinical Orthopaedics and Trauma 48 (2023): 102328, https://doi.org/10.1016/j.jcot.2023.102328.
|
| [11] |
Z. C. Hou, X. Miao, and Y. F. Ao, “Characteristics and Predictors of Muscle Strength Deficit in Mechanical Ankle Instability,” BMC Musculoskeletal Disorders 21, no. 1 (2020): 730, https://doi.org/10.1186/s12891-020-03754-9.
|
| [12] |
C. C. Lobo, C. R. Morales, D. R. Sanz, I. S. Corbalán, A. G. Marín, and D. L. López, “Ultrasonography Comparison of Peroneus Muscle Cross-Sectional Area in Subjects With or Without Lateral Ankle Sprains,” Journal of Manipulative and Physiological Therapeutics 39, no. 9 (2016): 635-644, https://doi.org/10.1016/j.jmpt.2016.09.001.
|
| [13] |
H. Mansur, J. L. Q. Durigan, S. Contessoto, D. A. Maranho, and M. H. Nogueira-Barbosa, “Evaluation of the Healing Status of Lateral Ankle Ligaments 6 Weeks After an Acute Ankle Sprain,” Journal of Foot and Ankle Surgery 63, no. 6 (2024): 637-645, https://doi.org/10.1053/j.jfas.2024.07.004.
|
| [14] |
T. M. Miklovic, L. Donovan, O. A. Protzuk, M. S. Kang, and M. A. Feger, “Acute Lateral Ankle Sprain to Chronic Ankle Instability: A Pathway of Dysfunction,” Physician and Sportsmedicine 46, no. 1 (2018): 116-122, https://doi.org/10.1080/00913847.2018.1409604.
|
| [15] |
M. A. Feger, S. Snell, G. G. Handsfield, et al., “Diminished Foot and Ankle Muscle Volumes in Young Adults With Chronic Ankle Instability,” Orthopaedic Journal of Sports Medicine 4, no. 6 (2016): 2325967116653719, https://doi.org/10.1177/2325967116653719.
|
| [16] |
O. R. Seynnes, C. N. Maganaris, M. D. de Boer, P. E. di Prampero, and M. V. Narici, “Early Structural Adaptations to Unloading in the Human Calf Muscles,” Acta Physiologica (Oxford, England) 193, no. 3 (2008): 265-274, https://doi.org/10.1111/j.1748-1716.2008.01842.x.
|
| [17] |
E. J. O. Hardy, T. B. Inns, J. Hatt, et al., “The Time Course of Disuse Muscle Atrophy of the Lower Limb in Health and Disease,” Journal of Cachexia, Sarcopenia and Muscle 13, no. 6 (2022): 2616-2629, https://doi.org/10.1002/jcsm.13067.
|
| [18] |
N. D. Reeves, M. V. Narici, and C. N. Maganaris, “Myotendinous Plasticity to Ageing and Resistance Exercise in Humans,” Experimental Physiology 91, no. 3 (2006): 483-498.
|
| [19] |
S. P. Magnusson and M. Kjaer, “The Impact of Loading, Unloading, Ageing and Injury on the Human Tendon,” Journal of Physiology 597, no. 5 (2019): 1283-1298, https://doi.org/10.1113/JP275450.
|
| [20] |
K. Kubo, H. Akima, J. Ushiyama, et al., “Effects of 20 Days of Bed Rest on the Viscoelastic Properties of Tendon Structures in Lower Limb Muscles,” British Journal of Sports Medicine 38, no. 3 (2004): 324-330, https://doi.org/10.1136/bjsm.2003.005595.
|
| [21] |
K. M. M. E. Lima, J. F. S. Costa Júnior, W. C. A. Pereira, and L. F. Oliveira, “Assessment of the Mechanical Properties of the Muscle-Tendon Unit by Supersonic Shear Wave Imaging Elastography: A Review,” Ultrasonography 37, no. 1 (2018): 3-15, https://doi.org/10.14366/usg.17017.
|
| [22] |
S. K. Crawford, D. Thelen, J. M. Yakey, B. C. Heiderscheit, J. J. Wilson, and K. S. Lee, “Regional Shear Wave Elastography of Achilles Tendinopathy in Symptomatic Versus Contralateral Achilles Tendons,” European Radiology 33, no. 1 (2023): 720-729, https://doi.org/10.1007/s00330-022-08957-3.
|
| [23] |
X. Zhou, C. Wang, S. Qiu, L. Mao, F. Chen, and S. Chen, “Non-Invasive Assessment of Changes in Muscle Injury by Ultrasound Shear Wave Elastography: An Experimental Study in a Contusion Model,” Ultrasound in Medicine & Biology 44, no. 12 (2018): 2759-2767, https://doi.org/10.1016/j.ultrasmedbio.2018.07.016.
|
| [24] |
R. Kinugasa, J. A. Hodgson, V. R. Edgerton, D. D. Shin, and S. Sinha, “Reduction in Tendon Elasticity From Unloading Is Unrelated to Its Hypertrophy,” Journal of Applied Physiology (1985) 109, no. 3 (2010): 870-877, https://doi.org/10.1152/japplphysiol.00384.2010.
|
| [25] |
M. D. de Boer, C. N. Maganaris, O. R. Seynnes, M. J. Rennie, and M. V. Narici, “Time Course of Muscular, Neural and Tendinous Adaptations to 23-Day Unilateral Lower-Limb Suspension in Young Men,” Journal of Physiology 583, no. 3 (2007): 1079-1091, https://doi.org/10.1113/jphysiol.2007.135392.
|
| [26] |
J. Hertel, “Sensorimotor Deficits With Ankle Sprains and Chronic Ankle Instability,” Clinics in Sports Medicine 27, no. 3 (2008): 353-370.
|
| [27] |
I. D. Loram and M. Lakie, “Human Balancing of an Inverted Pendulum: Is Sway Size Controlled by Ankle Impedance?,” Journal of Physiology 540, no. Pt 3 (2002): 1111-1121.
|
| [28] |
K. L. Jakubowski, D. Ludvig, D. Bujnowski, S. S. M. Lee, and E. J. Perreault, “Simultaneous Quantification of Ankle, Muscle, and Tendon Impedance in Humans,” IEEE Transactions on Biomedical Engineering 69, no. 12 (2022): 3657-3666, https://doi.org/10.1109/TBME.2022.3175646.
|
| [29] |
K. L. Jakubowski, D. Ludvig, E. J. Perreault, and S. S. M. Lee, “Non-Linear Properties of the Achilles Tendon Determine Ankle Impedance Over a Broad Range of Activations in Humans,” Journal of Experimental Biology 226, no. 14 (2023): jeb244863, https://doi.org/10.1242/jeb.244863.
|
| [30] |
T. E. Sakanaka, J. Gill, M. D. Lakie, and R. F. Reynolds, “Intrinsic Ankle Stiffness During Standing Increases With Ankle Torque and Passive Stretch of the Achilles Tendon,” PLoS One 13, no. 3 (2018): e0193850, https://doi.org/10.1371/journal.pone.0193850.
|
| [31] |
K. Chino and H. Takahashi, “Association of Muscle and Tendon Elasticity With Passive Joint Stiffness in the Human Ankle,” European Journal of Applied Physiology 116, no. 5 (2016): 937-944.
|
| [32] |
I. D. Loram, C. N. Maganaris, and M. Lakie, “The Passive, Human Calf Muscles in Relation to Standing: The Non-Linear Decrease From Short Range to Long Range Stiffness,” Journal of Physiology 584, no. Pt 2 (2007): 661-675, https://doi.org/10.1113/jphysiol.2007.140046.
|
| [33] |
T. Kobayashi, M. Saka, E. Suzuki, et al., “In Vivo Kinematics of the Talocrural and Subtalar Joints During Weightbearing Ankle Rotation in Chronic Ankle Instability,” Foot & Ankle Specialist 7, no. 1 (2014): 13-19, https://doi.org/10.1177/1938640013514269.
|
| [34] |
J. E. Kovaleski, R. J. Heitman, L. R. Gurchiek, J. M. Hollis, W. Liu, and A. W. Pearsall, “Joint Stability Characteristics of the Ankle Complex in Female Athletes With Histories of Lateral Ankle Sprain, Part II: Clinical Experience Using Arthrometric Measurement,” Journal of Athletic Training 49, no. 2 (2014): 198-203, https://doi.org/10.4085/1062-6050-49.2.08.
|
| [35] |
P. Corrigan, J. A. Zellers, P. Balascio, K. G. Silbernagel, and D. H. Cortes, “Quantification of Mechanical Properties in Healthy Achilles Tendon Using Continuous Shear Wave Elastography: A Reliability and Validation Study,” Ultrasound in Medicine & Biology 45, no. 7 (2019): 1574-1585, https://doi.org/10.1016/j.ultrasmedbio.2019.03.015.
|
| [36] |
J. L. Gennisson, C. Cornu, S. Catheline, M. Fink, and P. Portero, “Human Muscle Hardness Assessment During Incremental Isometric Contraction Using Transient Elastography,” Journal of Biomechanics 38, no. 7 (2005): 1543-1550, https://doi.org/10.1016/j.jbiomech.2004.07.013.
|
| [37] |
C. L. Liu, Y. X. Zheng, W. H. Zheng, et al., “Muscle Architecture and Mechanical Properties of the Quadriceps and Hamstrings in Athletes With Anterior Cruciate Ligament Reconstruction at 6 Months Post-Surgery,” International Journal of Sports Medicine 41, no. 3 (2020): 165-174, https://doi.org/10.1055/a-1037-8752.
|
| [38] |
J. A. Martin, A. H. Biedrzycki, K. S. Lee, et al., “In Vivo Measures of Shear Wave Speed as a Predictor of Tendon Elasticity and Strength,” Ultrasound in Medicine & Biology 41, no. 10 (2015): 2722-2730, https://doi.org/10.1016/j.ultrasmedbio.2015.06.008.
|
| [39] |
T. Mifsud, A. Gatt, K. Micallef-Stafrace, N. Chockalingam, and N. Padhiar, “Elastography in the Assessment of the Achilles Tendon: A Systematic Review of Measurement Properties,” Journal of Foot and Ankle Research 16, no. 1 (2023): 23, https://doi.org/10.1186/s13047-023-00623-1.
|
| [40] |
L. C. Slane, J. Martin, R. DeWall, D. Thelen, and K. Lee, “Quantitative Ultrasound Mapping of Regional Variations in Shear Wave Speeds of the Aging Achilles Tendon,” European Radiology 27, no. 2 (2017): 474-482, https://doi.org/10.1007/s00330-016-4409-0.
|
| [41] |
S. F. Eby, B. A. Cloud, J. E. Brandenburg, et al., “Shear Wave Elastography of Passive Skeletal Muscle Stiffness: Influences of Sex and Age Throughout Adulthood,” Clinical Biomechanics (Bristol, Avon) 30, no. 1 (2015): 22-27, https://doi.org/10.1016/j.clinbiomech.2014.11.011.
|
| [42] |
E. E. Drakonaki, I. Sudoł-Szopińska, C. Sinopidis, and P. Givissis, “High-Resolution Ultrasound for Imaging Complications of Muscle Injury: Is There an Additional Role for Elastography?,” Journal of Ultrasound 19, no. 77 (2019): 137-144, https://doi.org/10.15557/JoU.2019.0020.
|
| [43] |
J. M. Geremia, M. F. Bobbert, M. Casa Nova, et al., “The Structural and Mechanical Properties of the Achilles Tendon 2 Years After Surgical Repair,” Clinical Biomechanics (Bristol, Avon) 30, no. 5 (2015): 485-492, https://doi.org/10.1016/j.clinbiomech.2015.03.005.
|
| [44] |
M. Goo, L. M. Johnston, F. Hug, and K. Tucker, “Systematic Review of Instrumented Measures of Skeletal Muscle Mechanical Properties: Evidence for the Application of Shear Wave Elastography With Children,” Ultrasound in Medicine & Biology 46, no. 8 (2020): 1831-1840, https://doi.org/10.1016/j.ultrasmedbio.2020.04.009.
|
| [45] |
N. Y. Kelp, C. J. Clemente, K. Tucker, F. Hug, S. Pinel, and T. J. M. Dick, “Influence of Internal Muscle Properties on Muscle Shape Change and Gearing in the Human Gastrocnemii,” Journal of Applied Physiology (1985) 134, no. 6 (2023): 1520-1529, https://doi.org/10.1152/japplphysiol.00080.2023.
|
| [46] |
W. P. Mayer, J. D. S. Baptista, F. De Oliveira, M. Mori, and E. A. Liberti, “Consequences of Ankle Joint Immobilisation: Insights From a Morphometric Analysis About Fibre Typification, Intramuscular Connective Tissue, and Muscle Spindle in Rats,” Histochemistry and Cell Biology 156, no. 6 (2021): 583-594, https://doi.org/10.1007/s00418-021-02027-3.
|
| [47] |
S. Pinel, N. Y. Kelp, J. M. Bugeja, B. Bolsterlee, F. Hug, and T. J. M. Dick, “Quantity Versus Quality: Age-Related Differences in Muscle Volume, Intramuscular Fat, and Mechanical Properties in the Triceps Surae,” Experimental Gerontology 156 (2021): 111594, https://doi.org/10.1016/j.exger.2021.111594.
|
| [48] |
G. K. Thot, C. Berwanger, E. Mulder, et al., “Effects of Long-Term Immobilisation on Endomysium of the Soleus Muscle in Humans,” Experimental Physiology 106, no. 10 (2021): 2038-2045, https://doi.org/10.1113/EP089734.
|
| [49] |
N. Malliaropoulos, E. Papacostas, A. Papalada, and N. Maffulli, “Acute Lateral Ankle Sprains in Track and Field Athletes: An Expanded Classification,” Foot and Ankle Clinics 11, no. 3 (2006): 497-507.
|
| [50] |
D. Lacerda, D. Pacheco, A. T. Rocha, P. Diniz, I. Pedro, and F. G. Pinto, “Current Concept Review: State of Acute Lateral Ankle Injury Classification Systems,” Journal of Foot and Ankle Surgery 62, no. 1 (2023): 197-203, https://doi.org/10.1053/j.jfas.2022.08.005.
|
| [51] |
Y. E. Gomes, M. Chau, H. A. Banwell, and R. S. Causby, “Diagnostic Accuracy of the Ottawa Ankle Rule to Exclude Fractures in Acute Ankle Injuries in Adults: A Systematic Review and meta-Analysis,” BMC Musculoskeletal Disorders 23, no. 1 (2022): 885, https://doi.org/10.1186/s12891-022-05831-7.
|
| [52] |
A. Mizusaki Imoto, S. Peccin, R. Rodrigues, and J. Mizusaki, “Translation, Cultural Adaptation and Validation of Foot and Ankle Outcome Score (FAOS) Questionnaire Into Portuguese,” Acta Ortopédica Brasileira 17, no. 4 (2009): 232-235, https://doi.org/10.1590/S1413-78522009000400008.
|
| [53] |
P. Terrier, S. Piotton, I. M. Punt, J. L. Ziltener, and L. Allet, “Predictive Factors of Recovery After an Acute Lateral Ankle Sprain: A Longitudinal Study,” Sports 9, no. 3 (2021): 41, https://doi.org/10.3390/sports9030041.
|
| [54] |
N. Devoogdt and C. Cavaggion, “Reliability, Validity, and Feasibility of Water Displacement Method, Figure-Of-Eight Method, and Circumference Measurements in Determination of Ankle and Foot Edema,” Lymphatic Research and Biology 17, no. 5 (2019): 531-536.
|
| [55] |
H. P. Smitheman, K. D. Seymore, M. N. Potter, A. K. Smith, S. Aufwerber, and K. G. Silbernagel, “Measurement of Healthy and Injured Triceps Surae Morphology,” Journal of Visualized Experiments 200 (2023): e65798, https://doi.org/10.3791/65798.
|
| [56] |
G. Ferraioli, R. G. Barr, A. Farrokh, et al., “How to Perform Shear Wave Elastography. Part II,” Medical Ultrasonography 24, no. 2 (2022): 196-210, https://doi.org/10.11152/mu-3342.
|
| [57] |
R. Ando and Y. Suzuki, “Positive Relationship Between Passive Muscle Stiffness and Rapid Force Production,” Human Movement Science 66 (2019): 285-291, https://doi.org/10.1016/j.humov.2019.05.002.
|
| [58] |
G. Dubois, W. Kheireddine, C. Vergari, et al., “Reliable Protocol for Shear Wave Elastography of Lower Limb Muscles at Rest and During Passive Stretching,” Ultrasound in Medicine & Biology 41, no. 9 (2015): 2284-2291, https://doi.org/10.1016/j.ultrasmedbio.2015.04.020.
|
| [59] |
C. Ewertsen, J. F. Carlsen, I. R. Christiansen, J. A. Jensen, and M. B. Nielsen, “Evaluation of Healthy Muscle Tissue by Strain and Shear Wave Elastography - Dependency on Depth and ROI Position in Relation to Underlying Bone,” Ultrasonics 71 (2016): 127-133, https://doi.org/10.1016/j.ultras.2016.06.007.
|
| [60] |
J. Ryu and W. K. Jeong, “Current Status of Musculoskeletal Application of Shear Wave Elastography,” Ultrasonography 36, no. 3 (2017): 185-197, https://doi.org/10.14366/usg.16053.
|
| [61] |
J. Cohen, “The Earth Is Round (p<. 05): Rejoinder,” American Psychologist 50, no. 12 (1995): 1103, https://doi.org/10.1037/0003-066X.50.12.1103.
|
| [62] |
L. G. Portney and M. P. Watkins, Foundations of Clinical Research: Applications to Practice, 2nd ed. (Prentice Hall Health, 2000).
|
| [63] |
C. Doherty, C. Bleakley, J. Hertel, B. Caulfield, J. Ryan, and E. Delahunt, “Lower Extremity Function During Gait in Participants With First-Time Acute Lateral Ankle Sprain Compared to Controls,” Journal of Electromyography and Kinesiology 25, no. 1 (2015): 182-192, https://doi.org/10.1016/j.jelekin.2014.09.004.
|
| [64] |
B. C. Clark, N. K. Mahato, M. Nakazawa, T. D. Law, and J. S. Thomas, “The Power of the Mind: The Cortex as a Critical Determinant of Muscle Strength/Weakness,” Journal of Neurophysiology 112, no. 12 (2014): 3219-3226, https://doi.org/10.1152/jn.00386.2014.
|
| [65] |
S. P. Kilroe, J. Fulford, S. R. Jackman, L. J. C. VAN Loon, and B. T. Wall, “Temporal Muscle-Specific Disuse Atrophy During One Week of Leg Immobilization,” Medicine and Science in Sports and Exercise 52, no. 4 (2020): 944-954, https://doi.org/10.1249/MSS.0000000000002200.
|
| [66] |
B. Christensen, E. Dyrberg, P. Aagaard, M. Kjaer, and H. Langberg, “Short-Term Immobilization and Recovery Affect Skeletal Muscle but Not Collagen Tissue Turnover in Humans,” Journal of Applied Physiology (1985) 105, no. 6 (2008): 1845-1851, https://doi.org/10.1152/japplphysiol.90445.2008.
|
| [67] |
S. I. Docking and J. Cook, “How Do Tendons Adapt? Going Beyond Tissue Responses to Understand Positive Adaptation and Pathology Development: A Narrative Review,” Journal of Musculoskeletal & Neuronal Interactions 19, no. 3 (2019): 300-310.
|
| [68] |
L. N. Zhang, W. B. Wan, Y. X. Wang, et al., “Evaluation of Elastic Stiffness in Healing Achilles Tendon After Surgical Repair of a Tendon Rupture Using In Vivo Ultrasound Shear Wave Elastography,” Medical Science Monitor 22 (2016): 1186-1191, https://doi.org/10.12659/MSM.895674.
|
| [69] |
K. Yoshida, Y. Itoigawa, Y. Maruyama, and K. Kaneko, “Healing Process of Gastrocnemius Muscle Injury on Ultrasonography Using B-Mode Imaging, Power Doppler Imaging, and Shear Wave Elastography,” Journal of Ultrasound in Medicine 38, no. 12 (2019): 3239-3246, https://doi.org/10.1002/jum.15035.
|
| [70] |
Z. Wang, G. Lyu, H. Zhong, L. Yan, and Z. Xu, “Shear Wave Elastography for Detecting Calf Muscle Stiffness: An Effective Tool for Assessing Sarcopenia,” Journal of Ultrasound in Medicine 42, no. 4 (2023): 891-900, https://doi.org/10.1002/jum.16082.
|
| [71] |
X. M. Chen, L. G. Cui, P. He, W. W. Shen, Y. J. Qian, and J. R. Wang, “Shear Wave Elastographic Characterization of Normal and Torn Achilles Tendons: A Pilot Study,” Journal of Ultrasound in Medicine 32, no. 3 (2013): 449-455, https://doi.org/10.7863/jum.2013.32.3.449.
|
| [72] |
B. Frankewycz, A. Penz, J. Weber, et al., “Achilles Tendon Elastic Properties Remain Decreased in Long Term After Rupture,” Knee Surgery, Sports Traumatology, Arthroscopy 26, no. 7 (2018): 2080-2087, https://doi.org/10.1007/s00167-017-4791-4.
|
| [73] |
H. Zhang, W. Peng, C. Qin, et al., “Lower Leg Muscle Stiffness on Two-Dimensional Shear Wave Elastography in Subjects With Medial Tibial Stress Syndrome,” Journal of Ultrasound in Medicine 41, no. 7 (2022): 1633-1642, https://doi.org/10.1002/jum.15842.
|
| [74] |
A. Busilacchi, M. Olivieri, S. Ulisse, et al., “Real-Time Sonoelastography as Novel Follow-Up Method in Achilles Tendon Surgery,” Knee Surgery, Sports Traumatology, Arthroscopy 24, no. 7 (2016): 2124-2132, https://doi.org/10.1007/s00167-014-3484-5.
|
| [75] |
P. Corrigan, D. H. Cortes, R. T. Pohlig, and K. Grävare Silbernagel, “Tendon Morphology and Mechanical Properties Are Associated With the Recovery of Symptoms and Function in Patients With Achilles Tendinopathy,” Orthopaedic Journal of Sports Medicine 8, no. 4 (2020): 2325967120917271, https://doi.org/10.1177/2325967120917271.
|
| [76] |
D. H. Cortes, S. M. Suydam, K. G. Silbernagel, T. S. Buchanan, and D. M. Elliott, “Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons In Vivo,” Ultrasound in Medicine & Biology 41, no. 6 (2015): 1518-1529, https://doi.org/10.1016/j.ultrasmedbio.2015.02.001.
|
| [77] |
T. Dirrichs, V. Quack, M. Gatz, M. Tingart, C. K. Kuhl, and S. Schrading, “Shear Wave Elastography (SWE) for the Evaluation of Patients With Tendinopathies,” Academic Radiology 23, no. 10 (2016): 1204-1213, https://doi.org/10.1016/j.acra.2016.05.012.
|
| [78] |
S. L. Hanlon, R. Scattone Silva, B. J. Honick, and K. G. Silbernagel, “Effect of Symptom Duration on Injury Severity and Recovery in Patients With Achilles Tendinopathy,” Orthopaedic Journal of Sports Medicine 11, no. 5 (2023): 23259671231164956, https://doi.org/10.1177/23259671231164956.
|
| [79] |
K. D. Seymore, H. P. Smitheman, A. K. Smith, R. T. Pohlig, C. Couppé, and K. G. Silbernagel, “Metabolic Risk Factors Relate to Worse Tendon Health in Individuals With Achilles Tendinopathy,” Journal of Orthopaedic Research 43 (2025): 728-738, https://doi.org/10.1002/jor.26038.
|
| [80] |
M. Kawai, K. Taniguchi, T. Suzuki, and M. Katayose, “Estimation of Quadriceps Femoris Muscle Dysfunction in the Early Period After Surgery of the Knee Joint Using Shear-Wave Elastography,” BMJ Open Sport & Exercise Medicine 4, no. 1 (2018): e000381, https://doi.org/10.1136/bmjsem-2018-000381.
|
| [81] |
A. L. McPherson, N. A. Bates, C. R. Haider, T. Nagai, T. E. Hewett, and N. D. Schilaty, “Thigh Musculature Stiffness During Active Muscle Contraction After Anterior Cruciate Ligament Injury,” BMC Musculoskeletal Disorders 21, no. 1 (2020): 320, https://doi.org/10.1186/s12891-020-03342-x.
|
| [82] |
R. M. Khair, M. Sukanen, and T. Finni, “Achilles Tendon Stiffness: Influence of Measurement Methodology,” Ultrasound in Medicine & Biology 50, no. 10 (2024): 1522-1529, https://doi.org/10.1016/j.ultrasmedbio.2024.06.005.
|
| [83] |
F. M. Gonzalez, C. A. Gleason, K. S. Lee, et al., “Shear Wave Elastography Assessment and Comparison Study of the Achilles Tendons in Optimally Conditioned Asymptomatic Young Collegiate Athletes,” Skeletal Radiology 50, no. 12 (2021): 2381-2392, https://doi.org/10.1007/s00256-021-03798-5.
|
| [84] |
M. A. Pelea, O. Serban, M. Badarinza, R. Gutiu, and D. Fodor, “Shear-Wave Elastography of the Achilles Tendon: Reliability Analysis and Impact of Parameters Modulating Elasticity Values,” Journal of Ultrasound 27, no. 3 (2024): 559-566, https://doi.org/10.1007/s40477-024-00877-w.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.