Recent Advances in the Clinical Treatment of Osteochondral Lesions of the Talus (2021–2023): A Narrative Review

Hanbin Liao , Bowen Fu , Panpan Yang , Kai Chen , Yuxuan Wei , Canjun Zeng

Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (7) : 1924 -1935.

PDF
Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (7) : 1924 -1935. DOI: 10.1111/os.70066
REVIEW ARTICLE

Recent Advances in the Clinical Treatment of Osteochondral Lesions of the Talus (2021–2023): A Narrative Review

Author information +
History +
PDF

Abstract

The management of osteochondral lesions of the talus (OLT) remains a challenging clinical issue. With advances in theory and technology, treatment options for OLT have expanded significantly. This review examines recent progress in the clinical treatment of OLT, focusing on studies published from 2021 to 2023. We searched PubMed, Embase, and Cochrane databases to identify relevant clinical treatments, including both nonsurgical and surgical approaches. Surgical advancements have primarily centered on microfracture, bone transplantation, cartilage transplantation, combined cell therapy, and biomaterials. Among these, some innovative methods, such as autologous costal cartilage transplantation and biological scaffolds, have yielded promising clinical outcomes. However, high-quality clinical studies are still lacking, particularly those exploring nonsurgical treatments and physical therapy. Future research may increasingly focus on integrating biomaterials with physical therapy, which holds potential for improving patient outcomes.

Keywords

ankle / osteochondral lesion / progress / talus / treatment strategies

Cite this article

Download citation ▾
Hanbin Liao, Bowen Fu, Panpan Yang, Kai Chen, Yuxuan Wei, Canjun Zeng. Recent Advances in the Clinical Treatment of Osteochondral Lesions of the Talus (2021–2023): A Narrative Review. Orthopaedic Surgery, 2025, 17(7): 1924-1935 DOI:10.1111/os.70066

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

U. Brulc, M. Drobnič, M. Kolar, and K. Stražar, “A Prospective, Single-Center Study Following Operative Treatment for Osteochondral Lesions of the Talus,” Foot and Ankle Surgery 28, no. 6 (2022): 714-719, https://doi.org/10.1016/j.fas.2021.08.008.

[2]

M. Hu and X. Y. Xu, “Osteotomy Combined With Lateral Ligament Reconstruction in Treating Osteochondral Lesion in Patients With Talar Injury and Varus Ankle,” Medicine (Baltimore) 100, no. 12 (2021): e24330, https://doi.org/10.1097/MD.0000000000024330.

[3]

C. Faldini, A. Mazzotti, E. Artioli, et al., “A Novel Retrograde Technique for Ankle Osteochodral Lesions: The Sub-Endo-Chondral Regenerative Treatment (Secret),” Musculoskeletal Surgery 107, no. 3 (2023): 337-343, https://doi.org/10.1007/s12306-022-00767-6.

[4]

S. Hepple, I. G. Winson, and D. Glew, “Osteochondral Lesions of the Talus: A Revised Classification,” Foot & Ankle International 20, no. 12 (1999): 789-793, https://doi.org/10.1177/107110079902001206.

[5]

T. Nakasa, Y. Ikuta, J. Sumii, A. Nekomoto, S. Kawabata, and N. Adachi, “Clinical Outcomes of Osteochondral Fragment Fixation Versus Microfracture Even for Small Osteochondral Lesions of the Talus,” American Journal of Sports Medicine 50, no. 11 (2022): 3019-3027, https://doi.org/10.1177/03635465221109596.

[6]

W. A. Aldahshan, A. M. Abdelaziz, F. A. Elsherief, et al., “Lesion Depth and Marrow Stimulation Results,” Foot and Ankle Surgery 29, no. 2 (2023): 165-170, https://doi.org/10.1016/j.fas.2022.12.010.

[7]

Q. G. H. Rikken, J. Dahmen, M. L. Reilingh, C. J. A. van Bergen, S. A. S. Stufkens, and G. M. M. J. Kerkhoffs, “Outcomes of Bone Marrow Stimulation for Secondary Osteochondral Lesions of the Talus Equal Outcomes for Primary Lesions,” Cartilage 13, no. 1 Suppl (2021): 1429S-1437S, https://doi.org/10.1177/19476035211025816.

[8]

S. Geyer, J. Mattes, W. Petersen, A. B. Imhoff, and A. E. Achtnich, “Arthroscopic One-Step Matrix-Assisted Bone Marrow Stimulation for the Treatment of Osteochondral Defects of the Talus,” Operative Orthopädie und Traumatologie 34, no. 4 (2022): 295-302, https://doi.org/10.1007/s00064-021-00737-4.

[9]

S. Fu, K. Yang, X. Li, et al., “Radiographic and Clinical Outcomes After Arthroscopic Microfracture for Osteochondral Lesions of the Talus: 5-Year Results in 355 Consecutive Ankles,” Orthopaedic Journal of Sports Medicine 10, no. 10 (2022): 23259671221128772, https://doi.org/10.1177/23259671221128772.

[10]

R. M. Danilkowicz, N. L. Grimm, G. X. Zhang, et al., “Impact of Early Weightbearing After Ankle Arthroscopy and Bone Marrow Stimulation for Osteochondral Lesions of the Talus,” Orthopaedic Journal of Sports Medicine 9, no. 9 (2021): 23259671211029883, https://doi.org/10.1177/23259671211029883.

[11]

B. Gorgun, A. Gamlı, M. E. Duran, B. Bayram, T. K. Ulku, and B. Kocaoglu, “Collagen Scaffold Application in Arthroscopic Reconstruction of Osteochondral Lesions of the Talus With Autologous Cancellous Bone Grafts,” Orthopaedic Journal of Sports Medicine 11, no. 1 (2023): 23259671221145733, https://doi.org/10.1177/23259671221145733.

[12]

B. Ayyaswamy, M. Salim, R. Sidaginamale, M. Elsayed, P. Karpe, and R. Limaye, “Early to Medium Term Outcomes of Osteochondral Lesions of the Talus Treated by Autologous Matrix Induced Chondrogenesis (AMIC),” Foot and Ankle Surgery 27, no. 2 (2021): 207-212, https://doi.org/10.1016/j.fas.2020.04.008.

[13]

F. Migliorini, J. Eschweiler, N. Maffulli, et al., “Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study,” Life 11, no. 3 (2021): 244, https://doi.org/10.3390/life11030244.

[14]

F. Migliorini, H. Schenker, N. Maffulli, et al., “Autologous Matrix Induced Chondrogenesis (AMIC) as Revision Procedure for Failed AMIC in Recurrent Symptomatic Osteochondral Defects of the Talus,” Scientific Reports 12, no. 1 (2022): 16244, https://doi.org/10.1038/s41598-022-20641-6.

[15]

M. Waltenspül, M. Meisterhans, J. Ackermann, and S. Wirth, “Typical Complications After Cartilage Repair of the Ankle Using Autologous Matrix-Induced Chondrogenesis (AMIC),” Foot & Ankle Orthopaedics 8, no. 1 (2023): 24730114231164150, https://doi.org/10.1177/24730114231164150.

[16]

J. Li, Q. Ma, J. Hou, et al., “The Efficacy of Microfracture Combined With Extracorporeal Shock Wave Therapy for Treating Osteochondral Lesion of the Talus and the Quality of Regenerated Cartilage: A Retrospective Cohort Study and MRI Assessment,” Journal of Clinical Medicine 12, no. 8 (2023): 2966, https://doi.org/10.3390/jcm12082966.

[17]

S. Allahabadi, B. Johnson, M. Whitney, D. Oji, L. Chou, and B. C. Lau, “Short-Term Outcomes Following Dehydrated Micronized Allogenic Cartilage Versus Isolated Microfracture for Treatment of Medial Talar Osteochondral Lesions,” Foot and Ankle Surgery 28, no. 5 (2022): 642-649, https://doi.org/10.1016/j.fas.2021.07.012.

[18]

J. Ahn, J. G. Choi, and B. O. Jeong, “Clinical Outcomes After Arthroscopic Microfracture for Osteochondral Lesions of the Talus Are Better in Patients With Decreased Postoperative Subchondral Bone Marrow Edema,” Knee Surgery, Sports Traumatology, Arthroscopy 29, no. 5 (2021): 1570-1576, https://doi.org/10.1007/s00167-020-06303-y.

[19]

M. C. Drakos, S. K. Eble, T. N. Cabe, et al., “Comparison of Functional and Radiographic Outcomes of Talar Osteochondral Lesions Repaired With Micronized Allogenic Cartilage Extracellular Matrix and Bone Marrow Aspirate Concentrate vs Microfracture,” Foot & Ankle International 42, no. 7 (2021): 841-850, https://doi.org/10.1177/1071100720983266.

[20]

S. Yang, L. Jing, L. Chen, et al., “Favourable Clinical, Arthroscopic and Radiographic Outcomes After Autologous Osteoperiosteal Transplantation for Massive Medial Cystic Osteochondral Defects of the Talus,” Knee Surgery, Sports Traumatology, Arthroscopy 31, no. 8 (2023): 3509-3516, https://doi.org/10.1007/s00167-023-07397-w.

[21]

J. Dahmen, Q. G. H. Rikken, G. M. M. J. Kerkhoffs, and S. A. S. Stufkens, “Talar OsteoPeriostic Grafting From the Iliac Crest (TOPIC) for Lateral Osteochondral Lesions of the Talus: Operative Technique,” Operative Orthopädie und Traumatologie 35, no. 2 (2023): 82-91, https://doi.org/10.1007/s00064-022-00789-0.

[22]

H. Guo, Z. Chen, Y. Wei, et al., “Autologous Osteoperiosteal Transplantation for the Treatment of Large Cystic Talar Osteochondral Lesions,” Orthopaedic Surgery 15, no. 1 (2023): 103-110, https://doi.org/10.1111/os.13586.

[23]

W. Shi, S. Yang, S. Xiong, et al., “Comparison of Autologous Osteoperiosteal and Osteochondral Transplantation for the Treatment of Large, Medial Cystic Osteochondral Lesions of the Talus,” American Journal of Sports Medicine 50, no. 3 (2022): 769-777, https://doi.org/10.1177/03635465211068529.

[24]

H. H. Sorensen, A. G. F. Smith, D. J. Wagner, and K. D. Martin, “Modified Low-Flow Arthroscopic Sandwich Technique for Complex Osteochondral Lesions of the Talus,” Arthroscopy Techniques 12, no. 11 (2023): e1885-e1889, https://doi.org/10.1016/j.eats.2023.07.002.

[25]

R. Akmeşe, M. B. Ertan, and M. Özyildiran, “The Application of all-Arthroscopic Technique to Deep Osteochondral Lesions in the Talus With Scaffold and Autograft Bone Taken From the Tibial Plafond,” Journal of the American Academy of Orthopaedic Surgeons 29, no. 6 (2021): 258-266, https://doi.org/10.5435/JAAOS-D-20-00636.

[26]

S. Li, R. Lu, J. Zhang, H. Tao, and Y. Hua, “Outcomes of Arthroscopic Bone Graft Transplantation for Hepple Stage V Osteochondral Lesions of the Talus,” Annals of Translational Medicine 9, no. 10 (2021): 884, https://doi.org/10.21037/atm-21-2006.

[27]

T. Huber, A. Schwertner, R. Breuer, C. G. Charwat-Pessler, B. Rath, and E. Orthner, “Retrograde Drilling, Ossoscopy, and Autologous Bone Grafting: An Alternative Technique for Treatment of Osteochondral Lesion of the Talus Stage 2 and 3 in Adults,” Foot & Ankle International 44, no. 6 (2023): 488-496, https://doi.org/10.1177/10711007231162825.

[28]

Y. Wei, H. Guo, Z. Chen, N. Sun, and C. Zeng, “Autologous Costal Chondral/Osteochondral Transplantation and Costa-Derived Chondrocyte Implantation for Articular Cartilage Repair: Basic Science and Clinical Applications,” Orthopaedic Surgery 16, no. 3 (2024): 523-531, https://doi.org/10.1111/os.13992.

[29]

A. L. Gianakos, O. Okedele, M. K. Mulcahey, G. M. Kerkhoffs, and J. G. Kennedy, “Autologous Osteochondral Transplantation for Osteochondral Lesions of the Talus—Does Sex Play a Role?,” Journal of Foot and Ankle Surgery 62, no. 1 (2023): 96-101, https://doi.org/10.1053/j.jfas.2022.05.005.

[30]

S. M. Choi, B. K. Cho, C. Kang, and C. H. Min, “Comparison of Intermediate-Term Clinical Outcomes Between Medial and Lateral Osteochondral Lesions of the Talus Treated With Autologous Osteochondral Transplantation,” Foot & Ankle International 44, no. 7 (2023): 606-616, https://doi.org/10.1177/10711007231169946.

[31]

P. W. Winkler, S. Geyer, D. Walzl, et al., “Favorable Long-Term Clinical and Radiologic Outcomes With High Survivorship After Autologous Osteochondral Transplantation of the Talus,” Knee Surgery, Sports Traumatology, Arthroscopy 31, no. 6 (2023): 2166-2173, https://doi.org/10.1007/s00167-022-07237-3.

[32]

O. B. Hansen, S. K. Eble, K. Patel, et al., “Comparison of Clinical and Radiographic Outcomes Following Arthroscopic Debridement With Extracellular Matrix Augmentation and Osteochondral Autograft Transplantation for Medium-Size Osteochondral Lesions of the Talus,” Foot & Ankle International 42, no. 6 (2021): 689-698, https://doi.org/10.1177/1071100720980020.

[33]

M. C. Drakos, O. B. Hansen, S. K. Eble, et al., “Augmenting Osteochondral Autograft Transplantation and Bone Marrow Aspirate Concentrate With Particulate Cartilage Extracellular Matrix Is Associated With Improved Outcomes,” Foot & Ankle International 43, no. 9 (2022): 1131-1142, https://doi.org/10.1177/10711007221104069.

[34]

S. Abas, J. H. Kuiper, S. Roberts, et al., “Osteochondral Lesions of the Ankle Treated With Bone Marrow Concentrate With Hyaluronan and Fibrin: A Single-Centre Study,” Cells 11, no. 4 (2022): 629, https://doi.org/10.3390/cells11040629.

[35]

Y. Wei, H. Guo, N. Sun, Z. Tang, J. Ding, and C. Zeng, “Autologous Costal Osteochondral Transplantation for Cystic Osteochondral Lesions of the Talus: Feasible and Effective,” Orthopaedic Surgery 15, no. 11 (2023): 2985-2992, https://doi.org/10.1111/os.13864.

[36]

N. P. Mercer, A. P. Samsonov, J. F. Dankert, and J. G. Kennedy, “Outcomes of Autologous Osteochondral Transplantation With and Without Extracellular Matrix Cartilage Allograft Augmentation for Osteochondral Lesions of the Talus,” American Journal of Sports Medicine 50, no. 1 (2022): 162-169, https://doi.org/10.1177/03635465211057117.

[37]

C. M. Windhofer, E. Orthner, and H. K. Bürger, “Vascularized Osteochondral Free Flaps From the Femoral Trochlea as Versatile Procedure for Reconstruction of Osteochondral Lesions of the Talus,” Foot and Ankle Surgery 28, no. 7 (2022): 935-943, https://doi.org/10.1016/j.fas.2022.01.002.

[38]

D. D. Wan, H. Huang, M. Z. Hu, and Q. Y. Dong, “Results of the Osteochondral Autologous Transplantation for Treatment of Osteochondral Lesions of the Talus With Harvesting From the Ipsilateral Talar Articular Facets,” International Orthopaedics 46, no. 7 (2022): 1547-1555, https://doi.org/10.1007/s00264-022-05380-7.

[39]

C. Guo, X. Li, Y. Zhu, C. Yang, and X. Xu, “Clinical and MRI Donor-Site Outcomes After Autograft Harvesting From the Medial Trochlea for Talar Osteochondral Lesions: Minimum 5-Year Clinical Follow-Up,” Orthopaedic Journal of Sports Medicine 10, no. 9 (2022): 23259671221120075, https://doi.org/10.1177/23259671221120075.

[40]

Y. Zhang, J. q. Liang, X. d. Wen, P. l. Liu, J. Lu, and H. m. Zhao, “Triplane Osteotomy Combined With Talar Non-Weight-Bearing Area Autologous Osteochondral Transplantation for Osteochondral Lesions of the Talus,” BMC Musculoskeletal Disorders 23, no. 1 (2022): 79, https://doi.org/10.1186/s12891-022-05043-z.

[41]

C. H. Chu, I. H. Chen, K. C. Yang, and C. C. Wang, “Midterm Results of Fresh-Frozen Osteochondral Allografting for Osteochondral Lesions of the Talus,” Foot & Ankle International 42, no. 1 (2021): 8-16, https://doi.org/10.1177/1071100720949861.

[42]

K. Rucinski, J. L. Cook, K. M. Schweser, and B. D. Crist, “Short-Term Outcomes After Bipolar Osteochondral Allograft Transplantation (OCAT) in the Ankle,” Journal of Foot and Ankle Surgery 63, no. 2 (2024): 207-213, https://doi.org/10.1053/j.jfas.2023.11.002.

[43]

S. P. Dasari, T. M. Langer, D. Parshall, and B. Law, “Open Treatment of Osteochondral Lesions of the Talus With Bone Grafting and Particulated Juvenile Cartilage Allografting,” Foot & Ankle Specialist 17, no. 1 (2021): 19386400211009732, https://doi.org/10.1177/19386400211009732.

[44]

J. E. Manzi, K. Manchanda, M. H. Nasra, et al., “Long-Term Patient Outcomes for Treatment of Difficult Osteochondral Lesions of the Talus With Particulated Juvenile Allograft Cartilage Implantation ± Calcaneal Autograft: A Cohort Study,” European Journal of Orthopaedic Surgery & Traumatology 34, no. 1 (2024): 561-568, https://doi.org/10.1007/s00590-023-03642-7.

[45]

J. M. López-Alcorocho, I. Guillén-Vicente, E. Rodríguez-Iñigo, et al., “High-Density Autologous Chondrocyte Implantation as Treatment for Ankle Osteochondral Defects,” Cartilage 12, no. 3 (2021): 307-319, https://doi.org/10.1177/1947603519835898.

[46]

D. Körner, C. E. Gonser, S. Döbele, C. Konrads, F. Springer, and G. Keller, “Matrix-Associated Autologous Chondrocyte Implantation With Autologous Bone Grafting of Osteochondral Lesions of the Talus in Adolescents: Patient-Reported Outcomes With a Median Follow-Up of 6 Years,” Journal of Orthopaedic Surgery 16, no. 1 (2021): 243, https://doi.org/10.1186/s13018-021-02384-8.

[47]

M. Kolar, M. Veber, L. Girandon, and M. Drobnič, “Biomaterials Augmented With Filtered Bone Marrow Aspirate for the Treatment of Talar Osteochondral Lesions. A Comparison of Clinical and Cellular Parameters,” Journal of Orthopaedic Surgery 32, no. 1 (2024): 10225536231219970, https://doi.org/10.1177/10225536231219970.

[48]

F. Vannini, L. Berveglieri, A. Boffa, et al., “Hyaluronic Scaffold Transplantation With Bone Marrow Concentrate for the Treatment of Osteochondral Lesions of the Talus: Durable Results up to a Minimum of 10 Years,” Knee Surgery, Sports Traumatology, Arthroscopy 31, no. 10 (2023): 4551-4558, https://doi.org/10.1007/s00167-023-07490-0.

[49]

Y. Ikuta, T. Nakasa, J. Sumii, A. Nekomoto, and N. Adachi, “Histopathological and Radiographic Features of Osteolysis After Fixation of Osteochondral Fragments Using Poly-L-Lactic Acid Pins for Osteochondral Lesions of the Talus,” American Journal of Sports Medicine 49, no. 6 (2021): 1589-1595, https://doi.org/10.1177/03635465211001758.

[50]

T. M. F. Buck, K. Lauf, J. Dahmen, J. N. Altink, S. A. S. Stufkens, and G. M. M. J. Kerkhoffs, “Non-Operative Management for Osteochondral Lesions of the Talus: A Systematic Review of Treatment Modalities, Clinical- and Radiological Outcomes,” Knee Surgery, Sports Traumatology, Arthroscopy 31, no. 8 (2023): 3517-3527, https://doi.org/10.1007/s00167-023-07408-w.

[51]

M. Walther, O. Gottschalk, H. Madry, et al., “Etiology, Classification, Diagnostics, and Conservative Management of Osteochondral Lesions of the Talus. 2023 Recommendations of the Working Group “Clinical Tissue Regeneration” of the German Society of Orthopedics and Traumatology,” Cartilage 14, no. 3 (2023): 292-304, https://doi.org/10.1177/19476035231161806.

[52]

P. D'Hooghe, C. D. Murawski, L. A. T. Boakye, et al., “Rehabilitation and Return to Sports: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle,” Foot & Ankle International 39, no. 1 S (2018): 61S-67S, https://doi.org/10.1177/1071100718781862.

[53]

H. Song and K. H. Park, “Regulation and Function of SOX9 During Cartilage Development and Regeneration,” Seminars in Cancer Biology 67 (2020): 12-23, https://doi.org/10.1016/j.semcancer.2020.04.008.

[54]

F. Migliorini, J. Eschweiler, C. Goetze, et al., “Cell Therapies for Chondral Defects of the Talus: A Systematic Review,” Journal of Orthopaedic Surgery 17, no. 1 (2022): 308, https://doi.org/10.1186/s13018-022-03203-4.

[55]

F. Yang, Y. Li, L. Wang, et al., “Full-Thickness Osteochondral Defect Repair Using a Biodegradable Bilayered Scaffold of Porous Zinc and Chondroitin Sulfate Hydrogel,” Bioactive Materials 32 (2024): 400-414, https://doi.org/10.1016/j.bioactmat.2023.10.014.

[56]

X. He, S. He, G. Xiang, et al., “Precise Lubrication and Protection of Cartilage Damage by Targeting Hydrogel Microsphere,” Advanced Materials 36 (2024): 2405943, https://doi.org/10.1002/adma.202405943.

[57]

C. Shen, J. Wang, G. Li, et al., “Boosting Cartilage Repair With Silk Fibroin-DNA Hydrogel-Based Cartilage Organoid Precursor,” Bioactive Materials 35 (2024): 429-444, https://doi.org/10.1016/j.bioactmat.2024.02.016.

[58]

G. Tian, H. Yin, J. Zheng, et al., “Promotion of Osteochondral Repair Through Immune Microenvironment Regulation and Activation of Endogenous Chondrogenesis via the Release of Apoptotic Vesicles From Donor MSCs,” Bioactive Materials 41 (2024): 455-470, https://doi.org/10.1016/j.bioactmat.2024.07.034.

RIGHTS & PERMISSIONS

2025 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/