Is There a Role of Photoacoustic Imaging in Sports Medicine: Evidence Today

Chenggong Ma , Angat Naresh Chadha , Cheng Wu , Peter V. Giannoudis , Jiong Jiong Guo

Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (6) : 1589 -1603.

PDF
Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (6) : 1589 -1603. DOI: 10.1111/os.70031
REVIEW ARTICLE

Is There a Role of Photoacoustic Imaging in Sports Medicine: Evidence Today

Author information +
History +
PDF

Abstract

Diagnostic imaging in sports medicine includes traditional imaging modalities such as x-ray, computed tomography (CT), and magnetic resonance imaging (MRI). Despite having certain advantages, these imaging techniques often have lower sensitivity and specificity, making it difficult to detect soft tissue injuries and early-stage cartilage damage. They also lack the ability to assess the biomechanical properties and functional states of tissues. Photoacoustic imaging (PAI) offers a powerful, non-ionizing, and cost-effective alternative to traditional imaging techniques in the diagnosis and therapeutic monitoring of sports injuries. PAI combines the benefits of optical imaging and ultrasound to provide high-resolution images of deep tissues, including tendons and ligaments. This technology uses pulsed lasers to irradiate tissues, causing thermal expansion and generating ultrasound waves, which are then captured and converted into images. PAI is particularly adept at depicting blood vessels and soft tissues with high resolution and sensitivity to the optical absorption contrasts of oxy- and deoxyhemoglobin. It can assess tissue oxygenation and metabolic activities, which are crucial for evaluating the healing process in sports injuries. Herein, the role of PAI in sports medicine is assessed and particularly its advantages over traditional imaging methods such as x-rays, CT scans, and MRI scans in diagnosing musculoskeletal injuries.

Keywords

bone / cartilage / muscle / photoacoustic imaging / sports medicine / synovium / tendon

Cite this article

Download citation ▾
Chenggong Ma, Angat Naresh Chadha, Cheng Wu, Peter V. Giannoudis, Jiong Jiong Guo. Is There a Role of Photoacoustic Imaging in Sports Medicine: Evidence Today. Orthopaedic Surgery, 2025, 17(6): 1589-1603 DOI:10.1111/os.70031

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Docheva, S. A. Müller, M. Majewski, and C. H. Evans, “Biologics for Tendon Repair,” Advanced Drug Delivery Reviews 84 (2015): 222-239, https://doi.org/10.1016/j.addr.2014.11.015.

[2]

Y. Xue, N. Riva, L. Zhao, et al., “Recent Advances of Exosomes in Soft Tissue Injuries in Sports Medicine: A Critical Review on Biological and Biomaterial Applications,” Journal of Controlled Release 364 (2023): 90-108, https://doi.org/10.1016/j.jconrel.2023.10.031.

[3]

T. Tang, “Aging and Musculoskeletal Health,” Journal of Orthopaedic Translation 46 (2024): A1-A2, https://doi.org/10.1016/j.jot.2024.05.006.

[4]

N. Hong, S. W. Cho, S. Shin, et al., “Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography,” Journal of Bone and Mineral Research 38, no. 6 (2023): 887-895, https://doi.org/10.1002/jbmr.4814.

[5]

“Twin Robotic X-Ray System in Small Bone and Joint Trauma: Impact of Cone-Beam Computed Tomography on Treatment DecisionsPubMed,” accessed April 29, 2024, https://pubmed.ncbi.nlm.nih.gov/33280057/.

[6]

C. Lopes, A. Vilaca, C. Rocha, and J. Mendes, “Knee Positioning Systems for X-Ray Environment: A Literature Review,” Physical and Engineering Sciences in Medicine 46, no. 1 (2023): 45-55, https://doi.org/10.1007/s13246-023-01221-y.

[7]

D. V. Flores, C. Mejía Gómez, M. Estrada-Castrillón, E. Smitaman, and M. N. Pathria, “MR Imaging of Muscle Trauma: Anatomy, Biomechanics, Pathophysiology, and Imaging Appearance,” Radiographics 38, no. 1 (2018): 124-148, https://doi.org/10.1148/rg.2018170072.

[8]

A. K. Dewan, A. B. Chhabra, A. J. Khanna, M. W. Anderson, and L. M. Brunton, “MRI of the Elbow: Techniques and Spectrum of Disease: AAOS Exhibit Selection,” Journal of Bone and Joint Surgery. American Volume 95, no. 14 (2013): e99 1-13, https://doi.org/10.2106/JBJS.L.01621.

[9]

J. R. Monte, M. T. Hooijmans, M. Froeling, et al., “Diffusion Tensor Imaging and Quantitative T2 Mapping to Monitor Muscle Recovery Following Hamstring Injury,” NMR in Biomedicine 36, no. 7 (2023): e4902, https://doi.org/10.1002/nbm.4902.

[10]

D. Hayashi, F. W. Roemer, J. L. Tol, et al., “Emerging Quantitative Imaging Techniques in Sports Medicine,” Radiology 308, no. 2 (2023): e221531, https://doi.org/10.1148/radiol.221531.

[11]

J. Jo and X. Yang, “Detection of Cocaine Induced Rat Brain Activation by Photoacoustic Tomography,” Journal of Neuroscience Methods 195, no. 2 (2011): 232-235, https://doi.org/10.1016/j.jneumeth.2010.12.006.

[12]

J. Jo, H. Zhang, P. D. Cheney, and X. Yang, “Photoacoustic Detection of Functional Responses in the Motor Cortex of Awake Behaving Monkey During Forelimb Movement,” Journal of Biomedical Optics 17, no. 11 (2012): 110503, https://doi.org/10.1117/1.JBO.17.11.110503.

[13]

L. Lin, J. Xia, T. T. W. Wong, L. Li, and L. V. Wang, “In Vivo Deep Brain Imaging of Rats Using Oral-Cavity Illuminated Photoacoustic Computed Tomography,” Journal of Biomedical Optics 20, no. 1 (2015): 16019, https://doi.org/10.1117/1.JBO.20.1.016019.

[14]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute Photoacoustic Thermometry in Deep Tissue,” Optics Letters 38, no. 24 (2013): 5228-5231.

[15]

“Biomedical Photoacoustic Imaging. Interface Focus,” accessed April 29, 2024, https://doi.org/10.1098/rsfs.2011.0028.

[16]

“Photoacoustic Imaging in Biomedicine,” Review of Scientific Instruments. AIP Publishing, accessed April 29, 2024, https://pubs.aip.org/aip/rsi/article-abstract/77/4/041101/913562/Photoacoustic-imaging-in-biomedicine.

[17]

“Photoacoustic-Guided Surgery From Head to Toe [Invited],” accessed April 29, 2024, https://opg.optica.org/boe/fulltext.cfm?uri=boe-12-4-2079&id=449260.

[18]

“Photoacoustic Imaging for Surgical Guidance: Principles, Applications, and Outlook,” | Journal of Applied Physics | AIP Publishing, accessed April 29, 2024, https://pubs.aip.org/aip/jap/article/128/6/060904/1063713.

[19]

L. V. Wang, “Multiscale Photoacoustic Microscopy and Computed Tomography,” Nature Photonics 3, no. 9 (2009): 503-509, https://doi.org/10.1038/nphoton.2009.157.

[20]

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging From Organelles to Organs,” Science 335, no. 6075 (2012): 1458-1462, https://doi.org/10.1126/science.1216210.

[21]

T. Köker, N. Tang, C. Tian, et al., “Cellular Imaging by Targeted Assembly of Hot-Spot SERS and Photoacoustic Nanoprobes Using Split-Fluorescent Protein Scaffolds,” Nature Communications 9 (2018): 607, https://doi.org/10.1038/s41467-018-03046-w.

[22]

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and Sensing Based on Dual-Pulse Nonlinear Photoacoustic Contrast: A Preliminary Study on Fatty Liver,” Optics Letters 40, no. 10 (2015): 2253-2256.

[23]

C. Tian, W. Qian, X. Shao, et al., “Plasmonic Nanoparticles With Quantitatively Controlled Bioconjugation for Photoacoustic Imaging of Live Cancer Cells,” Advanced Science 3, no. 12 (2016): 1600237, https://doi.org/10.1002/advs.201600237.

[24]

J. Lian, F. Sewani, I. Dayan, et al., “Systematic Review of Injuries in the Men's and Women's National Basketball Association,” American Journal of Sports Medicine 50, no. 5 (2022): 1416-1429, https://doi.org/10.1177/03635465211014506.

[25]

S. J. Warden, W. B. Edwards, and R. W. Willy, “Preventing Bone Stress Injuries in Runners With Optimal Workload,” Current Osteoporosis Reports 19, no. 3 (2021): 298-307, https://doi.org/10.1007/s11914-021-00666-y.

[26]

J. A. Nicholson, N. Makaram, A. Simpson, and J. F. Keating, “Fracture Nonunion in Long Bones: A Literature Review of Risk Factors and Surgical Management,” Injury 52 (2021): S3-S11, https://doi.org/10.1016/j.injury.2020.11.029.

[27]

Z. C. Ding, Y. K. Lin, Y. K. Gan, and T. T. Tang, “Molecular Pathogenesis of Fracture Nonunion,” Journal of Orthopaedic Translation 14 (2018): 45-56, https://doi.org/10.1016/j.jot.2018.05.002.

[28]

M. Hadjiargyrou, L. Salichos, and P. Kloen, “Identification of the miRNAome in Human Fracture Callus and Nonunion Tissues,” Journal of Orthopaedic Translation 39 (2023): 113-123, https://doi.org/10.1016/j.jot.2023.01.005.

[29]

L. A. Mills, S. A. Aitken, and A. H. R. W. Simpson, “The Risk of Non-Union per Fracture: Current Myths and Revised Figures From a Population of Over 4 Million Adults,” Acta Orthopaedica 88, no. 4 (2017): 434-439, https://doi.org/10.1080/17453674.2017.1321351.

[30]

M. M. Menger, M. Bleimehl, D. Bauer, et al., “Cilostazol Promotes Blood Vessel Formation and Bone Regeneration in a Murine Non-Union Model,” Biomedicine & Pharmacotherapy 168 (2023): 115697, https://doi.org/10.1016/j.biopha.2023.115697.

[31]

M. M. Menger, D. Bauer, M. Bleimehl, et al., “Sildenafil, a Phosphodiesterase-5 Inhibitor, Stimulates Angiogenesis and Bone Regeneration in an Atrophic Non-Union Model in Mice,” Journal of Translational Medicine 21, no. 1 (2023): 607, https://doi.org/10.1186/s12967-023-04441-8.

[32]

R. Xu, J. Wu, L. Zheng, and M. Zhao, “Undenatured Type II Collagen and Its Role in Improving Osteoarthritis,” Ageing Research Reviews 91 (2023): 102080, https://doi.org/10.1016/j.arr.2023.102080.

[33]

Y. Liu, M. Duan, D. Zhang, and J. Xie, “The Role of Mechano Growth Factor in Chondrocytes and Cartilage Defects: A Concise Review,” Acta Biochimica et Biophysica Sinica 55, no. 5 (2023): 701-712, https://doi.org/10.3724/abbs.2023086.

[34]

M. Wu, B. C. J. van Teeffelen, K. Ito, et al., “Spectroscopic Photoacoustic Imaging of Cartilage Damage,” Osteoarthritis and Cartilage 29, no. 7 (2021): 1071-1080, https://doi.org/10.1016/j.joca.2021.04.001.

[35]

Y. Hagiwara, T. Izumi, Y. Yabe, et al., “Simultaneous Evaluation of Articular Cartilage and Subchondral Bone From Immobilized Knee in Rats by Photoacoustic Imaging System,” Journal of Orthopaedic Science 20, no. 2 (2015): 397-402, https://doi.org/10.1007/s00776-014-0692-2.

[36]

T. Ukai, M. Sato, M. Ishihara, et al., “Usefulness of Using Laser-Induced Photoacoustic Measurement and 3.0 Tesla MRI to Assess Knee Cartilage Damage: A Comparison Study,” Arthritis Research & Therapy 17 (2015): 383, https://doi.org/10.1186/s13075-015-0899-4.

[37]

C. Hopkins and L. Qin, “Osteoporosis and Osteoarthritis: A Translational Perspective,” Journal of Orthopaedic Translation 22 (2020): 1, https://doi.org/10.1016/j.jot.2020.04.006.

[38]

B. Li and D. Chen, “Degenerative Musculoskeletal Diseases: Pathology and Treatments,” Journal of Orthopaedic Translation 17 (2019): 1-2, https://doi.org/10.1016/j.jot.2019.05.001.

[39]

Z. Lv, Z. Wang, D. Chen, and D. Shi, “Advances in Osteoarthritis Research: From Diagnosis, Treatment to Mechanism Studies,” Journal of Orthopaedic Translation 44 (2024): A4-A6, https://doi.org/10.1016/j.jot.2024.01.006.

[40]

S. Xiao, Y. Tang, Y. Lin, Z. Lv, and L. Chen, “Tracking Osteoarthritis Progress Through Cationic Nanoprobe-Enhanced Photoacoustic Imaging of Cartilage,” Acta Biomaterialia 109 (2020): 153-162, https://doi.org/10.1016/j.actbio.2020.04.001.

[41]

S. L. Sherman, Z. J. DiPaolo, T. E. Ray, B. M. Sachs, and L. O. Oladeji, “Meniscus Injuries: A Review of Rehabilitation and Return to Play,” Clinics in Sports Medicine 39, no. 1 (2020): 165-183, https://doi.org/10.1016/j.csm.2019.08.004.

[42]

B. G. Adams, M. N. Houston, and K. L. Cameron, “The Epidemiology of Meniscus Injury,” Sports Medicine and Arthroscopy Review 29, no. 3 (2021): e24-e33, https://doi.org/10.1097/JSA.0000000000000329.

[43]

A. R. Markes, J. D. Hodax, and C. B. Ma, “Meniscus Form and Function,” Clinics in Sports Medicine 39, no. 1 (2020): 1-12, https://doi.org/10.1016/j.csm.2019.08.007.

[44]

W. Fedje-Johnston, F. Tóth, M. Albersheim, et al., “Changes in Matrix Components in the Developing Human Meniscus,” American Journal of Sports Medicine 49, no. 1 (2021): 207-214, https://doi.org/10.1177/0363546520972418.

[45]

E. Sanchez-Lopez, R. Coras, A. Torres, N. E. Lane, and M. Guma, “Synovial Inflammation in Osteoarthritis Progression,” Nature Reviews Rheumatology 18, no. 5 (2022): 258-275, https://doi.org/10.1038/s41584-022-00749-9.

[46]

T. Pap, B. Dankbar, C. Wehmeyer, A. Korb-Pap, and J. Sherwood, “Synovial Fibroblasts and Articular Tissue Remodelling: Role and Mechanisms,” Seminars in Cell & Developmental Biology 101 (2020): 140-145, https://doi.org/10.1016/j.semcdb.2019.12.006.

[47]

A. Small and M. D. Wechalekar, “Synovial Biopsies in Inflammatory Arthritis: Precision Medicine in Rheumatoid Arthritis,” Expert Review of Molecular Diagnostics 20, no. 3 (2020): 315-325, https://doi.org/10.1080/14737159.2020.1707671.

[48]

G. Nygaard and G. S. Firestein, “Restoring Synovial Homeostasis in Rheumatoid Arthritis by Targeting Fibroblast-Like Synoviocytes,” Nature Reviews Rheumatology 16, no. 6 (2020): 316-333, https://doi.org/10.1038/s41584-020-0413-5.

[49]

Z. Wang, Z. Tong, H. Chen, et al., “Photoacoustic/Ultrasonic Dual-Mode Imaging for Monitoring Angiogenesis and Synovial Erosion in Rheumatoid Arthritis,” Photoacoustics 29 (2023): 100458, https://doi.org/10.1016/j.pacs.2023.100458.

[50]

J. Chen, S. Zeng, Q. Xue, et al., “Photoacoustic Image-Guided Biomimetic Nanoparticles Targeting Rheumatoid Arthritis,” Proceedings of the National Academy of Sciences of the United States of America 119, no. 43 (2022): e2213373119, https://doi.org/10.1073/pnas.2213373119.

[51]

M. Yang, C. Zhao, M. Wang, et al., “Synovial Oxygenation at Photoacoustic Imaging to Assess Rheumatoid Arthritis Disease Activity,” Radiology 306, no. 1 (2023): 220-228, https://doi.org/10.1148/radiol.212257.

[52]

J. Jo, G. Xu, M. Cao, et al., “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Scientific Reports 7 (2017): 15026.

[53]

C. Zhao, Q. Wang, X. Tao, et al., “Multimodal Photoacoustic/Ultrasonic Imaging System: A Promising Imaging Method for the Evaluation of Disease Activity in Rheumatoid Arthritis,” European Radiology 31, no. 5 (2021): 3542-3552.

[54]

M. Nishiyama, T. Namita, K. Kondo, M. Yamakawa, and T. Shiina, “Ring-Array Photoacoustic Tomography for Imaging Human Finger Vasculature,” Journal of Biomedical Optics 24, no. 9 (2019): 1-12, https://doi.org/10.1117/1.JBO.24.9.096005.

[55]

C. T. Thorpe, M. J. Peffers, D. Simpson, E. Halliwell, H. R. C. Screen, and P. D. Clegg, “Anatomical Heterogeneity of Tendon: Fascicular and Interfascicular Tendon Compartments Have Distinct Proteomic Composition,” Scientific Reports 6 (2016): 20455, https://doi.org/10.1038/srep20455.

[56]

G. H. Filho, J. Du, B. C. Pak, et al., “Quantitative Characterization of the Achilles Tendon in Cadaveric Specimens: T1 and T2* Measurements Using Ultrashort-TE MRI at 3 T,” AJR. American Journal of Roentgenology 192, no. 3 (2009): W117-W124, https://doi.org/10.2214/AJR.07.3990.

[57]

G. D. Fullerton and A. Rahal, “Collagen Structure: The Molecular Source of the Tendon Magic Angle Effect,” Journal of Magnetic Resonance Imaging 25, no. 2 (2007): 345-361.

[58]

S. J. Erickson, I. H. Cox, J. S. Hyde, G. F. Carrera, J. A. Strandt, and L. D. Estkowski, “Effect of Tendon Orientation on MR Imaging Signal Intensity: A Manifestation of the “Magic Angle” Phenomenon,” Radiology 181, no. 2 (1991): 389-392.

[59]

S. Peto, P. Gillis, and V. P. Henri, “Structure and Dynamics of Water in Tendon From NMR Relaxation Measurements,” Biophysical Journal 57, no. 1 (1990): 71-84.

[60]

C. M. López De Padilla, M. J. Coenen, A. Tovar, R. E. De la Vega, C. H. Evans, and S. A. Müller, “Picrosirius Red Staining: Revisiting Its Application to the Qualitative and Quantitative Assessment of Collagen Type I and Type III in Tendon,” Journal of Histochemistry and Cytochemistry 69, no. 10 (2021): 633-643, https://doi.org/10.1369/00221554211046777.

[61]

H. D. Lee, J. G. Shin, H. Hyun, B. A. Yu, and T. J. Eom, “Label-Free Photoacoustic Microscopy for In-Vivo Tendon Imaging Using a Fiber-Based Pulse Laser,” Scientific Reports 8 (2018): 4805, https://doi.org/10.1038/s41598-018-23113-y.

[62]

E. Park, Y. J. Lee, C. Lee, and T. J. Eom, “Effective Photoacoustic Absorption Spectrum for Collagen-Based Tissue Imaging,” Journal of Biomedical Optics 25, no. 5 (2020): 56002, https://doi.org/10.1117/1.JBO.25.5.056002.

[63]

J. Zou, W. Yang, W. Cui, et al., “Therapeutic Potential and Mechanisms of Mesenchymal Stem Cell-Derived Exosomes as Bioactive Materials in Tendon-Bone Healing,” Journal of Nanobiotechnology 21, no. 1 (2023): 14.

[64]

Z. Chen, M. Jin, H. He, et al., “Mesenchymal Stem Cells and Macrophages and Their Interactions in Tendon-Bone Healing,” Journal of Orthopaedic Translation 39 (2023): 63-73, https://doi.org/10.1016/j.jot.2022.12.005.

[65]

X. Cheng, J. Xu, Z. Hu, J. Jiang, Z. Wang, and M. Lu, “Dual-Modal Magnetic Resonance and Photoacoustic Tracking and Outcome of Transplanted Tendon Stem Cells in the Rat Rotator Cuff Injury Model,” Scientific Reports 10, no. 1 (2020): 13954, https://doi.org/10.1038/s41598-020-69214-5.

[66]

M. Lu, X. Cheng, J. Jiang, et al., “Dual-Modal Photoacoustic and Magnetic Resonance Tracking of Tendon Stem Cells With PLGA/Iron Oxide Microparticles In Vitro,” PLoS One 13, no. 4 (2018): e0193362, https://doi.org/10.1371/journal.pone.0193362.

[67]

L. Chia, D. de Oliveira Silva, M. Whalan, et al., “Non-Contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review With Meta-Analysis by Sex, Age, Sport, Participation Level, and Exposure Type,” Sports Medicine 52, no. 10 (2022): 2447-2467, https://doi.org/10.1007/s40279-022-01697-w.

[68]

J. A. Perini, L. R. Lopes, J. A. M. Guimarães, et al., “Influence of Type I Collagen Polymorphisms and Risk of Anterior Cruciate Ligament Rupture in Athletes: A Case-Control Study,” BMC Musculoskeletal Disorders 23, no. 1 (2022): 154, https://doi.org/10.1186/s12891-022-05105-2.

[69]

R. F. Escamilla and J. R. Andrews, “Shoulder Muscle Recruitment Patterns and Related Biomechanics During Upper Extremity Sports,” Sports Medicine 39, no. 7 (2009): 569-590, https://doi.org/10.2165/00007256-200939070-00004.

[70]

N. van Melick, W. van der Weegen, and N. van der Horst, “Quadriceps and Hamstrings Strength Reference Values for Athletes With and Without Anterior Cruciate Ligament Reconstruction Who Play Popular Pivoting Sports, Including Soccer, Basketball, and Handball: A Scoping Review,” Journal of Orthopaedic and Sports Physical Therapy 52, no. 3 (2022): 142-155, https://doi.org/10.2519/jospt.2022.10693.

[71]

B. L. Eck, M. Yang, J. J. Elias, et al., “Quantitative MRI for Evaluation of Musculoskeletal Disease: Cartilage and Muscle Composition, Joint Inflammation, and Biomechanics in Osteoarthritis,” Investigative Radiology 58, no. 1 (2023): 60-75, https://doi.org/10.1097/RLI.0000000000000909.

[72]

P. Hai, J. Yao, G. Li, C. Li, and L. V. Wang, “Photoacoustic Elastography,” Optics Letters 41, no. 4 (2016): 725-728.

[73]

A. P. Regensburger, L. M. Fonteyne, J. Jüngert, et al., “Detection of Collagens by Multispectral Optoacoustic Tomography as an Imaging Biomarker for Duchenne Muscular Dystrophy,” Nature Medicine 25, no. 12 (2019): 1905-1915, https://doi.org/10.1038/s41591-019-0669-y.

[74]

J. Yang, G. Zhang, W. Chang, et al., “Photoacoustic Imaging of Hemodynamic Changes in Forearm Skeletal Muscle During Cuff Occlusion,” Biomedical Optics Express 11, no. 8 (2020): 4560-4570.

[75]

L. Chen, H. Ma, H. Liu, et al., “Quantitative Photoacoustic Imaging for Early Detection of Muscle Ischemia Injury,” American Journal of Translational Research 9, no. 5 (2017): 2255-2265.

[76]

A. Dima and V. Ntziachristos, “In-Vivo Handheld Optoacoustic Tomography of the Human Thyroid,” Photoacoustics 4, no. 2 (2016): 65-69, https://doi.org/10.1016/j.pacs.2016.05.003.

[77]

M. Yang, L. Zhao, X. He, et al., “Photoacoustic/Ultrasound Dual Imaging of Human Thyroid Cancers: An Initial Clinical Study,” Biomedical Optics Express 8, no. 7 (2017): 3449-3457, https://doi.org/10.1364/BOE.8.003449.

[78]

M. Heijblom, D. Piras, M. Brinkhuis, et al., “Photoacoustic Image Patterns of Breast Carcinoma and Comparisons With Magnetic Resonance Imaging and Vascular Stained Histopathology,” Scientific Reports 5 (2015): 11778, https://doi.org/10.1038/srep11778.

[79]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. del Rio, and D. Steed, “Dedicated 3D Photoacoustic Breast Imaging,” Medical Physics 40, no. 11 (2013): 113301, https://doi.org/10.1118/1.4824317.

[80]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. del Rio, and R. P. Doyle, “Photoacoustic Angiography of the Breast,” Medical Physics 37, no. 11 (2010): 6096-6100, https://doi.org/10.1118/1.3497677.

[81]

M. Toi, Y. Asao, Y. Matsumoto, et al., “Visualization of Tumor-Related Blood Vessels in Human Breast by Photoacoustic Imaging System With a Hemispherical Detector Array,” Scientific Reports 7 (2017): 41970, https://doi.org/10.1038/srep41970.

[82]

C. P. Favazza, O. Jassim, L. A. Cornelius, and L. V. Wang, “In Vivo Photoacoustic Microscopy of Human Cutaneous Microvasculature and a Nevus,” Journal of Biomedical Optics 16, no. 1 (2011): 16015, https://doi.org/10.1117/1.3528661.

[83]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In Vivo High-Resolution 3D Photoacoustic Imaging of Superficial Vascular Anatomy,” Physics in Medicine and Biology 54, no. 4 (2009): 1035-1046, https://doi.org/10.1088/0031-9155/54/4/014.

[84]

E. Z. Zhang, B. Povazay, J. Laufer, et al., “Multimodal Photoacoustic and Optical Coherence Tomography Scanner Using an all Optical Detection Scheme for 3D Morphological Skin Imaging,” Biomedical Optics Express 2, no. 8 (2011): 2202-2215, https://doi.org/10.1364/BOE.2.002202.

[85]

A. Horiguchi, K. Tsujita, K. Irisawa, et al., “A Pilot Study of Photoacoustic Imaging System for Improved Real-Time Visualization of Neurovascular Bundle During Radical Prostatectomy,” Prostate 76, no. 3 (2016): 307-315, https://doi.org/10.1002/pros.23122.

[86]

S. R. Kothapalli, G. A. Sonn, J. W. Choe, et al., “Simultaneous Transrectal Ultrasound and Photoacoustic Human Prostate Imaging,” Science Translational Medicine 11, no. 507 (2019): eaav2169, https://doi.org/10.1126/scitranslmed.aav2169.

[87]

K. S. Valluru and J. K. Willmann, “Clinical Photoacoustic Imaging of Cancer,” Ultrason Seoul Korea 35, no. 4 (2016): 267-280.

[88]

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser & Photonics Reviews 7, no. 5 (2013): 758-778, https://doi.org/10.1002/lpor.201200060.

RIGHTS & PERMISSIONS

2025 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/