PDF
Abstract
Background: The impact of posterior lateral tibial plateau fractures (PLTPFs) on knee joint stability after anterior cruciate ligament (ACL) reconstruction has garnered widespread attention. However, limited literature exists on the co-occurrence of ACL tibial avulsion fractures (ACLAFs) and PLTPFs. The objective of this study is to investigate the prevalence of PLTPFs in adult ACLAF patients and assess the impact of concurrent PLTPFs on postoperative knee function.
Methods: This retrospective study analyzed adults, who underwent arthroscopic surgery for ACLAF at our institution between January 2016 and January 2022. Demographic and preoperative/postoperative imaging data were collected, focusing on meniscus and ligament injuries, Segond fractures, PLTPFs, and tibial plateau slope. Patients were grouped into isolated ACLAF (I-ACLAF) and ACLAF with concurrent PLTPFs (ACLAF-PLTPF). The ACLAF-PLTPF group was further divided into Group A (PLTPFs not exceeding the anterior edge of the lateral meniscus posterior horn) and Group B (PLTPFs exceeding this edge). Clinical outcomes were evaluated using International Knee Documentation Committee and Tegner scores. The study also examined the morphology of PLTPFs and their specific affected areas. Statistical analysis was performed using the Mann–Whitney U tests for continuous variables and Fisher's exact tests for categorical variables.
Results: The study included 62 patients with a mean follow-up of 41 ± 17 months. Among these, 71.0% (44/62) patients with ACLAF also had PLTPFs. The ACLAF-PLTPF group showed a significantly steeper lateral tibial plateau slope than the I-ACLAF group (10.86° ± 5.47° vs. 7.17° ± 3.68°, p = 0.011). Segond fractures were present in 22.7% of the ACLAF-PLTPF group, compared to none in the I-ACLAF group (p = 0.027). IKDC and Tegner scores were lower in the ACLAF-PLTPF group (80.7 ± 5.2 and 4, respectively) than in the I-ACLAF group (87.4 ± 6.4 and 4.5, respectively), with statistical significance (p < 0.001 and p = 0.008, respectively). Older age correlated with a greater extent of concurrent PLTPFs (p = 0.038). Additionally, Patients in Group B exhibited a significantly higher incidence of meniscal injury (22.2% vs. 53.8%, p = 0.036) and poorer postoperative knee joint function compared to those in Group A (IKDC 82.3 ± 2.8 vs. 78.5 ± 5.6, p = 0.013). More extensive PLTPFs were linked to increased fracture collapse and a higher rate of lateral meniscus injuries.
Conclusion: PLTPFs demonstrated a high prevalence in adults with ACLAF. Additionally, the ACLAF-PLTPF cohort frequently showed reduced postoperative knee function. Simultaneous management of severe concomitant PLTPFs may improve long-term outcomes in patients with ACLAF.
Keywords
ACL
/
avulsion fracture of insertion
/
clinical outcome
/
posterolateral tibial plateau fracture
Cite this article
Download citation ▾
Bin Feng, Jian Peng, Weizhi Ren, Zhenghui Hu, Jiawei Ouyang, Wei Xu.
Posterolateral Tibial Plateau Fractures in Adult Anterior Cruciate Ligament Avulsion Effect on Postoperative Knee Function.
Orthopaedic Surgery, 2025, 17(5): 1359-1368 DOI:10.1111/os.70015
| [1] |
J. P. van der List, D. N. Mintz, and G. S. DiFelice, “The Location of Anterior Cruciate Ligament Tears: A Prevalence Study Using Magnetic Resonance Imaging,” Orthopaedic Journal of Sports Medicine 5, no. 6 (2017): 2325967117709966, https://doi.org/10.1177/2325967117709966.
|
| [2] |
R. Hargrove, S. Parsons, and R. Payne, “Anterior Tibial Spine Fracture - An Easy Fracture to Miss,” Accident and Emergency Nursing 12, no. 3 (2004): 173-175, https://doi.org/10.1016/j.aaen.2004.03.007.
|
| [3] |
A. Delcogliano, S. Chiossi, A. Caporaso, A. Menghi, and G. Rinonapoli, “Tibial Intercondylar Eminence Fractures in Adults: Arthroscopic Treatment,” Knee Surgery, Sports Traumatology, Arthroscopy 11, no. 4 (2003): 255-259, https://doi.org/10.1007/s00167-003-0373-8.
|
| [4] |
C. Kavalci, N. Dagdeviren, P. Durukan, and Y. Cevik, “Tibial Intercondylar Eminence Fractures in Adults,” Internal and Emergency Medicine 5, no. 1 (2010): 71-73, https://doi.org/10.1007/s11739-009-0286-8.
|
| [5] |
R. R, M. Jaseel, C. Murugan, and C. M. Kumaran, “Arthroscopic Tibial Spine Fracture Fixation: Novel Techniques,” Journal of Orthopaedics 15, no. 2 (2018): 372-374, https://doi.org/10.1016/j.jor.2018.01.056.
|
| [6] |
S. D. Kuang, C. Su, X. Zhao, Y. S. Li, Y. L. Xiong, and S. G. Gao, “Figure-Of-Eight Suture-Button Technique for Fixation of Displaced Anterior Cruciate Ligament Avulsion Fracture,” Orthopaedic Surgery 12, no. 3 (2020): 802-808, https://doi.org/10.1111/os.12682.
|
| [7] |
C. N. Anderson, J. S. Nyman, K. A. McCullough, et al., “Biomechanical Evaluation of Physeal-Sparing Fixation Methods in Tibial Eminence Fractures,” American Journal of Sports Medicine 41, no. 7 (2013): 1586-1594, https://doi.org/10.1177/0363546513488505.
|
| [8] |
S. A. Patel, J. Hageman, C. E. Quatman, S. C. Wordeman, and T. E. Hewett, “Prevalence and Location of Bone Bruises Associated With Anterior Cruciate Ligament Injury and Implications for Mechanism of Injury: A Systematic Review,” Sports Medicine 44, no. 2 (2014): 281-293, https://doi.org/10.1007/s40279-013-0116-z.
|
| [9] |
A. Korthaus, M. Warncke, G. Pagenstert, M. Krause, K. H. Frosch, and J. P. Kolb, “Lateral Femoral Notch Sign and Posterolateral Tibial Plateau Fractures and Their Associated Injuries in the Setting of an Anterior Cruciate Ligament Rupture,” Archives of Orthopaedic and Trauma Surgery 142, no. 7 (2022): 1605-1612, https://doi.org/10.1007/s00402-021-04105-6.
|
| [10] |
A. Flury, S. Hodel, O. Andronic, et al., “Extent of Posterolateral Tibial Plateau Impaction Fracture Correlates With Anterolateral Complex Injury and has an Impact on Functional Outcome After ACL Reconstruction,” Knee Surgery, Sports Traumatology, Arthroscopy 31, no. 6 (2022): 2266-2273, https://doi.org/10.1007/s00167-022-07282-y.
|
| [11] |
D. L. Bernholt, G. J. Dornan, N. N. DePhillipo, Z. S. Aman, M. I. Kennedy, and R. F. LaPrade, “High-Grade Posterolateral Tibial Plateau Impaction Fractures in the Setting of a Primary Anterior Cruciate Ligament Tear Are Correlated With an Increased Preoperative Pivot Shift and Inferior Postoperative Outcomes After Anterior Cruciate Ligament Reconstruction,” American Journal of Sports Medicine 48, no. 9 (2020): 2185-2194, https://doi.org/10.1177/0363546520932912.
|
| [12] |
D. L. Bernholt, N. N. DePhillipo, M. D. Crawford, Z. S. Aman, W. J. Grantham, and R. F. LaPrade, “Incidence of Displaced Posterolateral Tibial Plateau and Lateral Femoral Condyle Impaction Fractures in the Setting of Primary Anterior Cruciate Ligament Tear,” American Journal of Sports Medicine 48, no. 3 (2020): 545-553, https://doi.org/10.1177/0363546519895239.
|
| [13] |
D. D. Milinkovic, C. Kittl, E. Herbst, et al., “The “Bankart Knee”: High-Grade Impression Fractures of the Posterolateral Tibial Plateau Lead to Increased Translational and Anterolateral Rotational Instability of the ACL-Deficient Knee,” Knee Surgery, Sports Traumatology, Arthroscopy 31 (2023): 4151-4161, https://doi.org/10.1007/s00167-023-07432-w.
|
| [14] |
B. M. Godshaw, J. D. Hughes, G. A. Lucidi, et al., “Posterior Tibial Plateau Impaction Fractures Are Not Associated With Increased Knee Instability: A Quantitative Pivot Shift Analysis,” Knee Surgery, Sports Traumatology, Arthroscopy 31, no. 7 (2023): 2998-3006, https://doi.org/10.1007/s00167-023-07312-3.
|
| [15] |
L. Menzdorf, T. Drenck, R. Akoto, et al., “Clinical Results After Surgical Treatment of Posterolateral Tibial Plateau Fractures (“Apple Bite Fracture”) in Combination With ACL Injuries,” European Journal of Trauma and Emergency Surgery 46, no. 6 (2020): 1239-1248, https://doi.org/10.1007/s00068-020-01509-8.
|
| [16] |
R. Kolbe, A. Schmidt-Hebbel, P. Forkel, J. Pogorzelski, A. B. Imhoff, and M. J. Feucht, “Steep Lateral Tibial Slope and Lateral-To-Medial Slope Asymmetry Are Risk Factors for Concomitant Posterolateral Meniscus Root Tears in Anterior Cruciate Ligament Injuries,” Knee Surgery, Sports Traumatology, Arthroscopy 27, no. 8 (2019): 2585-2591, https://doi.org/10.1007/s00167-018-5279-6.
|
| [17] |
M. J. Feucht, P. U. Brucker, C. Camathias, et al., “Meniscal Injuries in Children and Adolescents Undergoing Surgical Treatment for Tibial Eminence Fractures,” Knee Surgery, Sports Traumatology, Arthroscopy 25, no. 2 (2017): 445-453, https://doi.org/10.1007/s00167-016-4184-0.
|
| [18] |
A. C. Johnson, J. D. Wyatt, G. Treme, and A. J. Veitch, “Incidence of Associated Knee Injury in Pediatric Tibial Eminence Fractures,” Journal of Knee Surgery 27, no. 3 (2014): 215-219, https://doi.org/10.1055/s-0033-1360656.
|
| [19] |
J. T. Rhodes, P. C. Cannamela, A. I. Cruz, et al., “Incidence of Meniscal Entrapment and Associated Knee Injuries in Tibial Spine Avulsions,” Journal of Pediatric Orthopedics 38, no. 2 (2018): e38-e42, https://doi.org/10.1097/BPO.0000000000001110.
|
| [20] |
M. Severyns, G. A. Odri, T. Vendeuvre, J. B. Marchand, A. Germaneau, and M. Drame, “Meniscal Injuries in Skeletally Immature Children With Tibial Eminence Fractures. Systematic Review of Literature,” International Orthopaedics 47, no. 10 (2023): 2439-2448, https://doi.org/10.1007/s00264-023-05787-w.
|
| [21] |
D. L. Bernholt, N. N. DePhillipo, W. J. Grantham, et al., “Morphologic Variants of Posterolateral Tibial Plateau Impaction Fractures in the Setting of Primary Anterior Cruciate Ligament Tear,” American Journal of Sports Medicine 48, no. 2 (2020): 318-325, https://doi.org/10.1177/0363546519893709.
|
| [22] |
D. L. Bernholt, J. M. Buchman, A. M. Baessler, et al., “The Incidence of Posterolateral Tibial Plateau and Central Lateral Femoral Condylar Impaction Fractures in a Pediatric and Young Adult Population,” Journal of Pediatric Orthopedics 43, no. 1 (2023): 18-23, https://doi.org/10.1097/BPO.0000000000002270.
|
| [23] |
A. S. Bernhardson, Z. S. Aman, G. J. Dornan, et al., “Tibial Slope and Its Effect on Force in Anterior Cruciate Ligament Grafts: Anterior Cruciate Ligament Force Increases Linearly as Posterior Tibial Slope Increases,” American Journal of Sports Medicine 47, no. 2 (2019): 296-302, https://doi.org/10.1177/0363546518820302.
|
| [24] |
Z. Ye, J. Xu, J. Chen, et al., “Steep Lateral Tibial Slope Measured on Magnetic Resonance Imaging Is the Best Radiological Predictor of Anterior Cruciate Ligament Reconstruction Failure,” Knee Surgery, Sports Traumatology, Arthroscopy 30, no. 10 (2022): 3377-3385, https://doi.org/10.1007/s00167-022-06923-6.
|
| [25] |
V. Jaecker, S. Drouven, J. H. Naendrup, A. C. Kanakamedala, T. Pfeiffer, and S. Shafizadeh, “Increased Medial and Lateral Tibial Posterior Slopes Are Independent Risk Factors for Graft Failure Following ACL Reconstruction,” Archives of Orthopaedic and Trauma Surgery 138, no. 10 (2018): 1423-1431, https://doi.org/10.1007/s00402-018-2968-z.
|
| [26] |
A. Fares, C. Horteur, M. Abou Al Ezz, et al., “Posterior Tibial Slope (PTS) >/= 10 Degrees Is a Risk Factor for Further Anterior Cruciate Ligament (ACL) Injury; BMI Is Not,” European Journal of Orthopaedic Surgery and Traumatology 33, no. 5 (2023): 2091-2099, https://doi.org/10.1007/s00590-022-03406-9.
|
| [27] |
I. Slagstad, A. P. Parkar, T. Strand, and E. Inderhaug, “Incidence and Prognostic Significance of the Segond Fracture in Patients Undergoing Anterior Cruciate Ligament Reconstruction,” American Journal of Sports Medicine 48, no. 5 (2020): 1063-1068, https://doi.org/10.1177/0363546520905557.
|
| [28] |
K. H. Yoon, J. S. Kim, S. Y. Park, and S. E. Park, “The Influence of Segond Fracture on Outcomes After Anterior Cruciate Ligament Reconstruction,” Arthroscopy 34, no. 6 (2018): 1900-1906, https://doi.org/10.1016/j.arthro.2018.01.023.
|
| [29] |
H. Shaikh, E. Herbst, A. A. Rahnemai-Azar, et al., “The Segond Fracture Is an Avulsion of the Anterolateral Complex,” American Journal of Sports Medicine 45, no. 10 (2017): 2247-2252, https://doi.org/10.1177/0363546517704845.
|
| [30] |
H. P. Melugin, V. S. Desai, C. L. Camp, et al., “Do Tibial Eminence Fractures and Anterior Cruciate Ligament Tears Have Similar Outcomes?,” Orthopaedic Journal of Sports Medicine 6, no. 12 (2018): 2325967118811854, https://doi.org/10.1177/2325967118811854.
|
| [31] |
R. Y. Pan, J. J. Yang, J. H. Chang, H. C. Shen, L. C. Lin, and Y. T. Lian, “Clinical Outcome of Arthroscopic Fixation of Anterior Tibial Eminence Avulsion Fractures in Skeletally Mature Patients: A Comparison of Suture and Screw Fixation Technique,” Journal of Trauma and Acute Care Surgery 72, no. 2 (2012): E88-E93, https://doi.org/10.1097/TA.0b013e3182319d5a.
|
| [32] |
E. Monaco, D. Mazza, A. Redler, et al., “Segond's Fracture: A Biomechanical Cadaveric Study Using Navigation,” Journal of Orthopaedics and Traumatology 18, no. 4 (2017): 343-348, https://doi.org/10.1007/s10195-017-0460-0.
|
| [33] |
T. Rosteius, V. Rausch, B. Jettkant, et al., “Influence of Articular Step-Off on Contact Mechanics in Fractures of the Posterolateral-Central Tibial Plateau - a Biomechanical Study,” Knee 41 (2023): 283-291, https://doi.org/10.1016/j.knee.2023.01.016.
|
| [34] |
Q. J. Shen, J. L. Zhang, G. S. Xing, et al., “Surgical Treatment of Lateral Tibial Plateau Fractures Involving the Posterolateral Column,” Orthopaedic Surgery 11, no. 6 (2019): 1029-1038, https://doi.org/10.1111/os.12544.
|
| [35] |
J. T. Jabara, A. J. Only, T. Z. Paull, K. L. Wise, M. F. Swiontkowski, and M. P. Nguyen, “Arthroscopically Assisted Percutaneous Screw Fixation of Tibial Plateau Fractures,” JBJS Essential Surgical Techniques 12, no. 2 (2022): e21, https://doi.org/10.2106/jbjs.St.21.00026.
|
| [36] |
M. Parkkinen, R. Madanat, A. Mustonen, S. K. Koskinen, M. Paavola, and J. Lindahl, “Factors Predicting the Development of Early Osteoarthritis Following Lateral Tibial Plateau Fractures: Mid-Term Clinical and Radiographic Outcomes of 73 Operatively Treated Patients,” Scandinavian Journal of Surgery 103, no. 4 (2014): 256-262, https://doi.org/10.1177/1457496914520854.
|
| [37] |
B. Zhu, J. Chen, Y. Zhang, L. Song, and J. Fang, “Revisiting the Flexion-Valgus Type Unicondylar Posterolateral Tibial Plateau Depression Fracture Pattern: Classification and Treatment,” Journal of Orthopaedic Surgery and Research 18, no. 1 (2023): 825, https://doi.org/10.1186/s13018-023-04318-y.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.