Autonomic Nervous System in Bone Remodeling: From Mechanisms to Novel Therapies in Orthopedic Diseases

Ruihao Xia , Hongjun Peng , Xishan Zhu , Wangdui Suolang , Steve T. L. Pambayi , Xiao Yang , Yi Zeng , Bin Shen

Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (6) : 1561 -1576.

PDF
Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (6) : 1561 -1576. DOI: 10.1111/os.70010
REVIEW ARTICLE

Autonomic Nervous System in Bone Remodeling: From Mechanisms to Novel Therapies in Orthopedic Diseases

Author information +
History +
PDF

Abstract

Recent literature has increasingly demonstrated the significant function of autonomic nerves in regulating physiological and pathological changes associated with the skeletal system. Extensive studies have been conducted to understand the contribution of the autonomic nervous system (ANS) to skeletal metabolic homeostasis and resistance to aseptic inflammation, specifically from the viewpoint of skeletal neurobiology. There have been plenty of studies on how the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS), the two main branches of the ANS, regulate bone remodeling, which is the process of bone formation and resorption. The following studies have revealed critical neurological pathways that induce significant alterations in bone cell biology and uncover the intricate linkages between the ANS and the skeletal system. Furthermore, inspired by the connection between the ANS and bone remodeling, neuromodulation has been utilized as a therapeutic method for patients with orthopedic diseases: by directly influencing the ANS, it is possible to alter the excitability of nerve fibers and the release of neurotransmitters, which can lead to anti-inflammatory and analgesic effects, thereby directly or indirectly impacting bone formation and bone resorption. Our work aims to review the most recent findings on the impact of the ANS on bone remodeling, enhance the current understanding of the interaction between nerves and bones, and explore potential neuromodulation methods that could be used to treat orthopedic conditions, thereby drawing attention to the significant role of the ANS in the skeletal system.

Keywords

autonomic nervous system / bone remodeling / neuromodulation / orthopedic diseases / therapies

Cite this article

Download citation ▾
Ruihao Xia, Hongjun Peng, Xishan Zhu, Wangdui Suolang, Steve T. L. Pambayi, Xiao Yang, Yi Zeng, Bin Shen. Autonomic Nervous System in Bone Remodeling: From Mechanisms to Novel Therapies in Orthopedic Diseases. Orthopaedic Surgery, 2025, 17(6): 1561-1576 DOI:10.1111/os.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Feng and J. M. McDonald, “Disorders of Bone Remodeling,” Annual Review of Pathology 6 (2011): 121-145, https://doi.org/10.1146/annurev-pathol-011110-130203.

[2]

J. M. Brazill, A. T. Beeve, C. S. Craft, J. J. Ivanusic, and E. L. Scheller, “Nerves in Bone: Evolving Concepts in Pain and Anabolism,” Journal of Bone and Mineral Research 34, no. 8 (2019): 1393-1406, https://doi.org/10.1002/jbmr.3822.

[3]

M. R. Lorenz, J. M. Brazill, A. T. Beeve, I. Shen, and E. L. Scheller, “A Neuroskeletal Atlas: Spatial Mapping and Contextualization of Axon Subtypes Innervating the Long Bones of C3H and B6 Mice,” Journal of Bone and Mineral Research 36, no. 5 (2021): 1012-1025, https://doi.org/10.1002/jbmr.4273.

[4]

J. Thai, M. Kyloh, L. Travis, N. J. Spencer, and J. J. Ivanusic, “Identifying Spinal Afferent (Sensory) Nerve Endings That Innervate the Marrow Cavity and Periosteum Using Anterograde Tracing,” Journal of Comparative Neurology 528, no. 11 (2020): 1903-1916, https://doi.org/10.1002/cne.24862.

[5]

S. Sj, M. B , L. S , et al., “Functional Adaptation to Loading of a Single Bone is Neuronally Regulated and Involves Multiple Bones,” Journal of Bone and Mineral Research 23, no. 9 (2008): 1372-1381, https://doi.org/10.1359/jbmr.080407.

[6]

H. Long, M. Ahmed, P. Ackermann, A. Stark, and J. Li, “Neuropeptide Y Innervation During Fracture Healing and Remodeling. A Study of Angulated Tibial Fractures in the Rat,” Acta Orthopaedica 81, no. 5 (2010): 639-646, https://doi.org/10.3109/17453674.2010.504609.

[7]

T. D. Yeater, J. Zubcevic, and K. D. Allen, “Measures of Cardiovascular Function Suggest Autonomic Nervous System Dysregulation After Surgical Induction of Joint Injury in the Male Lewis Rat,” Osteoarthritis and Cartilage 30, no. 4 (2022): 586-595, https://doi.org/10.1016/j.joca.2021.12.008.

[8]

S. Gadomski, C. Fielding, A. García-García, et al., “A Cholinergic Neuroskeletal Interface Promotes Bone Formation During Postnatal Growth and Exercise,” Cell Stem Cell 29, no. 4 (2022): 528-544.e9, https://doi.org/10.1016/j.stem.2022.02.008.

[9]

F. Elefteriou, “Impact of the Autonomic Nervous System on the Skeleton,” Physiological Reviews 98, no. 3 (2018): 1083-1112, https://doi.org/10.1152/physrev.00014.2017.

[10]

Z. Zhang, Z. Hao, C. Xian, et al., “Neuro-Bone Tissue Engineering: Multiple Potential Translational Strategies Between Nerve and Bone,” Acta Biomaterialia 153 (2022): 1-12, https://doi.org/10.1016/j.actbio.2022.09.023.

[11]

S. G. Grässel, “The Role of Peripheral Nerve Fibers and Their Neurotransmitters in Cartilage and Bone Physiology and Pathophysiology,” Arthritis Research & Therapy 16, no. 6 (2014): 485, https://doi.org/10.1186/s13075-014-0485-1.

[12]

A. Courties, J. Sellam, and F. Berenbaum, “Role of the Autonomic Nervous System in Osteoarthritis,” Best Practice & Research. Clinical Rheumatology 31, no. 5 (2017): 661-675, https://doi.org/10.1016/j.berh.2018.04.001.

[13]

H. H. Huang, T. C. Brennan, M. M. Muir, and R. S. Mason, “Functional Alpha1- and Beta2-Adrenergic Receptors in Human Osteoblasts,” Journal of Cellular Physiology 220, no. 1 (2009): 267-275, https://doi.org/10.1002/jcp.21761.

[14]

V. Mlakar, S. Jurkovic Mlakar, J. Zupan, R. Komadina, J. Prezelj, and J. Marc, “ADRA2A is Involved in Neuro-Endocrine Regulation of Bone Resorption,” Journal of Cellular and Molecular Medicine 19, no. 7 (2015): 1520-1529, https://doi.org/10.1111/jcmm.12505.

[15]

A. Togari, M. Arai, and A. Kondo, “The Role of the Sympathetic Nervous System in Controlling Bone Metabolism,” Expert Opinion on Therapeutic Targets 9, no. 5 (2005): 931-940, https://doi.org/10.1517/14728222.9.5.931.

[16]

C. H. Hu, B. D. Sui, J. Liu, et al., “Sympathetic Neurostress Drives Osteoblastic Exosomal MiR-21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia,” Small Methods 6, no. 3 (2022): e2100763, https://doi.org/10.1002/smtd.202100763.

[17]

Q. Guo, N. Chen, C. Qian, et al., “Sympathetic Innervation Regulates Osteocyte-Mediated Cortical Bone Resorption During Lactation,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 10, no. 18 (2023): e2207602, https://doi.org/10.1002/advs.202207602.

[18]

Y. Ma, J. J. Krueger, S. N. Redmon, et al., “Extracellular Norepinephrine Clearance by the Norepinephrine Transporter is Required for Skeletal Homeostasis,” Journal of Biological Chemistry 288, no. 42 (2013): 30105-30113, https://doi.org/10.1074/jbc.M113.481309.

[19]

S. Li, Z. Li, J. Yang, Y. Ha, X. Zhou, and C. He, “Inhibition of Sympathetic Activation by Delivering Calcium Channel Blockers From a 3D Printed Scaffold to Promote Bone Defect Repair,” Advanced Healthcare Materials 11, no. 16 (2022): e2200785, https://doi.org/10.1002/adhm.202200785.

[20]

A. Bajayo, A. Bar, A. Denes, et al., “Skeletal Parasympathetic Innervation Communicates Central IL-1 Signals Regulating Bone Mass Accrual,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 38 (2012): 15455-15460, https://doi.org/10.1073/pnas.1206061109.

[21]

A. Courties, M. Belle, S. Senay, et al., “Clearing Method for 3-Dimensional Immunofluorescence of Osteoarthritic Subchondral Human Bone Reveals Peripheral Cholinergic Nerves,” Scientific Reports 10, no. 1 (2020): 8852, https://doi.org/10.1038/s41598-020-65873-6.

[22]

Y. Shi, F. Oury, V. K. Yadav, et al., “Signaling Through the M(3) Muscarinic Receptor Favors Bone Mass Accrual by Decreasing Sympathetic Activity,” Cell Metabolism 11, no. 3 (2010): 231-238, https://doi.org/10.1016/j.cmet.2010.01.005.

[23]

B. J. Kim, M. K. Kwak, S. H. Ahn, et al., “Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone,” Journal of Clinical Endocrinology and Metabolism 102, no. 8 (2017): 2711-2718, https://doi.org/10.1210/jc.2017-00169.

[24]

B. J. Kim, M. K. Kwak, J. S. Kim, S. H. Lee, and J. M. Koh, “Higher Sympathetic Activity as a Risk Factor for Skeletal Deterioration in Pheochromocytoma,” Bone 116 (2018): 1-7, https://doi.org/10.1016/j.bone.2018.06.023.

[25]

T. Niedermair, V. Kuhn, F. Doranehgard, et al., “Absence of Substance P and the Sympathetic Nervous System Impact on Bone Structure and Chondrocyte Differentiation in an Adult Model of Endochondral Ossification,” Matrix Biology 38 (2014): 22-35, https://doi.org/10.1016/j.matbio.2014.06.007.

[26]

J. Beckmann, M. Knödl, E. Bauser, M. Tingart, J. Grifka, and R. H. Straub, “Loss of Sympathetic Nerve Fibers in Vital Intertrochanteric Bone Cylinders Lateral to Osteonecrosis of the Femoral Head,” Joint Bone Spine 80, no. 2 (2013): 188-194, https://doi.org/10.1016/j.jbspin.2012.03.003.

[27]

F. Elefteriou, J. D. Ahn, S. Takeda, et al., “Leptin Regulation of Bone Resorption by the Sympathetic Nervous System and CART,” Nature 434, no. 7032 (2005): 514-520, https://doi.org/10.1038/nature03398.

[28]

D. Kajimura, E. Hinoi, M. Ferron, et al., “Genetic Determination of the Cellular Basis of the Sympathetic Regulation of Bone Mass Accrual,” Journal of Experimental Medicine 208, no. 4 (2011): 841-851, https://doi.org/10.1084/jem.20102608.

[29]

S. Khosla, M. T. Drake, T. L. Volkman, et al., “Sympathetic β1-Adrenergic Signaling Contributes to Regulation of Human Bone Metabolism,” Journal of Clinical Investigation 128, no. 11 (2018): 4832-4842, https://doi.org/10.1172/JCI122151.

[30]

M. Nagao, T. N. Feinstein, Y. Ezura, et al., “Sympathetic Control of Bone Mass Regulated by Osteopontin,” Proceedings of the National Academy of Sciences of the United States of America 108, no. 43 (2011): 17767-17772, https://doi.org/10.1073/pnas.1109402108.

[31]

P. Ducy, M. Amling, S. Takeda, et al., “Leptin Inhibits Bone Formation Through a Hypothalamic Relay: A Central Control of Bone Mass,” Cell 100, no. 2 (2000): 197-207, https://doi.org/10.1016/s0092-8674(00)81558-5.

[32]

V. K. Yadav, F. Oury, N. Suda, et al., “A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure,” Cell 138, no. 5 (2009): 976-989, https://doi.org/10.1016/j.cell.2009.06.051.

[33]

Y. Zhao, X. Peng, Q. Wang, et al., “Crosstalk Between the Neuroendocrine System and Bone Homeostasis,” Endocrine Reviews 45, no. 1 (2023): bnad025, https://doi.org/10.1210/endrev/bnad025.

[34]

S. Takeda, F. Elefteriou, R. Levasseur, et al., “Leptin Regulates Bone Formation via the Sympathetic Nervous System,” Cell 111, no. 3 (2002): 305-317, https://doi.org/10.1016/s0092-8674(02)01049-8.

[35]

M. J. Ortuño, S. T. Robinson, P. Subramanyam, et al., “Serotonin-Reuptake Inhibitors Act Centrally to Cause Bone Loss in Mice by Counteracting a Local Anti-Resorptive Effect,” Nature Medicine 22, no. 10 (2016): 1170-1179, https://doi.org/10.1038/nm.4166.

[36]

T. Sato, T. Abe, N. Nakamoto, et al., “Nicotine Induces Cell Proliferation in Association With Cyclin D1 Up-Regulation and Inhibits Cell Differentiation in Association With p53 Regulation in a Murine Pre-Osteoblastic Cell Line,” Biochemical and Biophysical Research Communications 377, no. 1 (2008): 126-130, https://doi.org/10.1016/j.bbrc.2008.09.114.

[37]

C. A. Inkson, A. C. Brabbs, T. S. Grewal, T. M. Skerry, and P. G. Genever, “Characterization of Acetylcholinesterase Expression and Secretion During Osteoblast Differentiation,” Bone 35, no. 4 (2004): 819-827, https://doi.org/10.1016/j.bone.2004.05.026.

[38]

M. En-Nosse, S. Hartmann, K. Trinkaus, et al., “Expression of Non-Neuronal Cholinergic System in Osteoblast-Like Cells and Its Involvement in Osteogenesis,” Cell and Tissue Research 338, no. 2 (2009): 203-215, https://doi.org/10.1007/s00441-009-0871-1.

[39]

Q. Q. Wan, W. P. Qin, Y. X. Ma, et al., “Crosstalk Between Bone and Nerves Within Bone,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 8, no. 7 (2021): 2003390, https://doi.org/10.1002/advs.202003390.

[40]

S. R. Chartier, S. A. T. Mitchell, L. A. Majuta, and P. W. Mantyh, “The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur,” Neuroscience 387 (2018): 178-190, https://doi.org/10.1016/j.neuroscience.2018.01.047.

[41]

N. J. Lee, K. L. Doyle, A. Sainsbury, et al., “Critical Role for Y1 Receptors in Mesenchymal Progenitor Cell Differentiation and Osteoblast Activity,” Journal of Bone and Mineral Research 25, no. 8 (2010): 1736-1747, https://doi.org/10.1002/jbmr.61.

[42]

Y. Zhang, C. Y. Chen, Y. W. Liu, et al., “Neuronal Induction of Bone-Fat Imbalance Through Osteocyte Neuropeptide Y,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 8, no. 24 (2021): e2100808, https://doi.org/10.1002/advs.202100808.

[43]

T. L. Fonseca, V. Jorgetti, C. C. Costa, et al., “Double Disruption of α2A- and α2C-Adrenoceptors Results in Sympathetic Hyperactivity and High-Bone-Mass Phenotype,” Journal of Bone and Mineral Research 26, no. 3 (2011): 591-603, https://doi.org/10.1002/jbmr.243.

[44]

S. J. Aitken, E. Landao-Bassonga, S. H. Ralston, and A. I. Idris, “Beta2-Adrenoreceptor Ligands Regulate Osteoclast Differentiation In Vitro by Direct and Indirect Mechanisms,” Archives of Biochemistry and Biophysics 482, no. 1-2 (2009): 96-103, https://doi.org/10.1016/j.abb.2008.11.012.

[45]

T. Nishiura and K. Abe, “Alpha1-Adrenergic Receptor Stimulation Induces the Expression of Receptor Activator of Nuclear Factor kappaB Ligand Gene via Protein Kinase C and Extracellular Signal-Regulated Kinase Pathways in MC3T3-E1 Osteoblast-Like Cells,” Archives of Oral Biology 52, no. 8 (2007): 778-785, https://doi.org/10.1016/j.archoralbio.2007.01.005.

[46]

A. Togari, M. Arai, S. Mizutani, S. Mizutani, Y. Koshihara, and T. Nagatsu, “Expression of mRNAs for Neuropeptide Receptors and Beta-Adrenergic Receptors in Human Osteoblasts and Human Osteogenic Sarcoma Cells,” Neuroscience Letters 233, no. 2-3 (1997): 125-128, https://doi.org/10.1016/s0304-3940(97)00649-6.

[47]

S. Kellenberger, K. Muller, H. Richener, and G. Bilbe, “Formoterol and Isoproterenol Induce c-Fos Gene Expression in Osteoblast-Like Cells by Activating Beta2-Adrenergic Receptors,” Bone 22, no. 5 (1998): 471-478, https://doi.org/10.1016/s8756-3282(98)00026-x.

[48]

S. J. McDonald, P. C. Dooley, A. C. McDonald, et al., “α(1) Adrenergic Receptor Agonist, Phenylephrine, Actively Contracts Early Rat Rib Fracture Callus Ex Vivo,” Journal of Orthopaedic Research 29, no. 5 (2011): 740-745, https://doi.org/10.1002/jor.21302.

[49]

K. Hamajima, K. Hamamura, A. Chen, et al., “Suppression of Osteoclastogenesis via α2-Adrenergic Receptors,” Biomedical Reports 8, no. 5 (2018): 407-416, https://doi.org/10.3892/br.2018.1075.

[50]

H. Kondo, S. Takeuchi, and A. Togari, “β-Adrenergic Signaling Stimulates Osteoclastogenesis via Reactive Oxygen Species,” American Journal of Physiology. Endocrinology and Metabolism 304, no. 5 (2013): E507-E515, https://doi.org/10.1152/ajpendo.00191.2012.

[51]

M. Arai, T. Nagasawa, Y. Koshihara, S. Yamamoto, and A. Togari, “Effects of Beta-Adrenergic Agonists on Bone-Resorbing Activity in Human Osteoclast-Like Cells,” Biochimica et Biophysica Acta 1640, no. 2-3 (2003): 137-142, https://doi.org/10.1016/s0167-4889(03)00042-9.

[52]

K. Jiao, G. Zeng, L. N. Niu, et al., “Activation of α2A-Adrenergic Signal Transduction in Chondrocytes Promotes Degenerative Remodelling of Temporomandibular Joint,” Scientific Reports 6 (2016): 30085, https://doi.org/10.1038/srep30085.

[53]

Q. Guo, N. Chen, K. Patel, M. Wan, J. Zheng, and X. Cao, “Unloading-Induced Skeletal Interoception Alters Hypothalamic Signaling to Promote Bone Loss and Fat Metabolism,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 10, no. 35 (2023): e2305042, https://doi.org/10.1002/advs.202305042.

[54]

D. D. Pierroz, N. Bonnet, E. N. Bianchi, et al., “Deletion of β-Adrenergic Receptor 1, 2, or Both Leads to Different Bone Phenotypes and Response to Mechanical Stimulation,” Journal of Bone and Mineral Research 27, no. 6 (2012): 1252-1262, https://doi.org/10.1002/jbmr.1594.

[55]

K. Tanaka, T. Hirai, D. Kodama, H. Kondo, K. Hamamura, and A. Togari, “α1B-Adrenoceptor Signalling Regulates Bone Formation Through the Up-Regulation of CCAAT/Enhancer-Binding Protein δ Expression in Osteoblasts,” British Journal of Pharmacology 173, no. 6 (2016): 1058-1069, https://doi.org/10.1111/bph.13418.

[56]

J. Han, Z. Zou, C. Zhu, et al., “DNA Synthesis of Rat Bone Marrow Mesenchymal Stem Cells Through Alpha1-Adrenergic Receptors,” Archives of Biochemistry and Biophysics 490, no. 2 (2009): 96-102, https://doi.org/10.1016/j.abb.2009.08.009.

[57]

M. B. Cruz Grecco Teixeira, G. M. Martins, M. Miranda-Rodrigues, et al., “Lack of α2C-Adrenoceptor Results in Contrasting Phenotypes of Long Bones and Vertebra and Prevents the Thyrotoxicosis-Induced Osteopenia,” PLoS One 11, no. 1 (2016): e0146795, https://doi.org/10.1371/journal.pone.0146795.

[58]

Z. Zhou, G. Zhu, A. R. Hariri, et al., “Genetic Variation in Human NPY Expression Affects Stress Response and Emotion,” Nature 452, no. 7190 (2008): 997-1001, https://doi.org/10.1038/nature06858.

[59]

J. C. Igwe, X. Jiang, F. Paic, et al., “Neuropeptide Y is Expressed by Osteocytes and Can Inhibit Osteoblastic Activity,” Journal of Cellular Biochemistry 108, no. 3 (2009): 621-630, https://doi.org/10.1002/jcb.22294.

[60]

D. M. Sousa, P. A. Baldock, R. F. Enriquez, et al., “Neuropeptide Y Y1 Receptor Antagonism Increases Bone Mass in Mice,” Bone 51, no. 1 (2012): 8-16, https://doi.org/10.1016/j.bone.2012.03.020.

[61]

L. Shi, Y. Liu, Z. Yang, et al., “Vasoactive Intestinal Peptide Promotes Fracture Healing in Sympathectomized Mice,” Calcified Tissue International 109, no. 1 (2021): 55-65, https://doi.org/10.1007/s00223-021-00820-9.

[62]

A. Courties, J. Petit, A. Do, et al., “Alpha-7 Nicotinic Receptor Dampens Murine Osteoblastic Response to Inflammation and Age-Related Osteoarthritis,” Frontiers in Immunology 13 (2022): 842538, https://doi.org/10.3389/fimmu.2022.842538.

[63]

T. Sato, T. Abe, D. Chida, et al., “Functional Role of Acetylcholine and the Expression of Cholinergic Receptors and Components in Osteoblasts,” FEBS Letters 584, no. 4 (2010): 817-824, https://doi.org/10.1016/j.febslet.2010.01.001.

[64]

P. G. Genever, M. A. Birch, E. Brown, and T. M. Skerry, “Osteoblast-Derived Acetylcholinesterase: A Novel Mediator of Cell-Matrix Interactions in Bone?,” Bone 24, no. 4 (1999): 297-303, https://doi.org/10.1016/s8756-3282(98)00187-2.

[65]

P. S. Liu, Y. Y. Chen, C. K. Feng, Y. H. Lin, and T. C. Yu, “Muscarinic Acetylcholine Receptors Present in Human Osteoblast and Bone Tissue,” European Journal of Pharmacology 650, no. 1 (2011): 34-40, https://doi.org/10.1016/j.ejphar.2010.09.031.

[66]

L. M. Walker, M. R. Preston, J. L. Magnay, P. B. Thomas, and A. J. El Haj, “Nicotinic Regulation of c-Fos and Osteopontin Expression in Human-Derived Osteoblast-Like Cells and Human Trabecular Bone Organ Culture,” Bone 28, no. 6 (2001): 603-608, https://doi.org/10.1016/s8756-3282(01)00427-6.

[67]

P. Mandl, S. Hayer, T. Karonitsch, et al., “Nicotinic Acetylcholine Receptors Modulate Osteoclastogenesis,” Arthritis Research & Therapy 18 (2016): 63, https://doi.org/10.1186/s13075-016-0961-x.

[68]

Y. Ma, X. Li, J. Fu, et al., “Acetylcholine Affects Osteocytic MLO-Y4 Cells via Acetylcholine Receptors,” Molecular and Cellular Endocrinology 384, no. 1-2 (2014): 155-164, https://doi.org/10.1016/j.mce.2014.01.021.

[69]

H. Tanaka, N. Tanabe, T. Kawato, et al., “Nicotine Affects Bone Resorption and Suppresses the Expression of Cathepsin K, MMP-9 and Vacuolar-Type H(+)-ATPase d2 and Actin Organization in Osteoclasts,” PLoS One 8, no. 3 (2013): e59402, https://doi.org/10.1371/journal.pone.0059402.

[70]

F. Paic, J. C. Igwe, R. Nori, et al., “Identification of Differentially Expressed Genes Between Osteoblasts and Osteocytes,” Bone 45, no. 4 (2009): 682-692, https://doi.org/10.1016/j.bone.2009.06.010.

[71]

Y. M. Yoo, J. H. Kwag, K. H. Kim, and C. H. Kim, “Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption In Vitro,” International Journal of Molecular Sciences 15, no. 4 (2014): 5874-5883, https://doi.org/10.3390/ijms15045874.

[72]

E. Persson and U. H. Lerner, “The Neuropeptide VIP Regulates the Expression of Osteoclastogenic Factors in Osteoblasts,” Journal of Cellular Biochemistry 112, no. 12 (2011): 3732-3741, https://doi.org/10.1002/jcb.23304.

[73]

L. Shi, L. Feng, M. L. Zhu, et al., “Vasoactive Intestinal Peptide Stimulates Bone Marrow-Mesenchymal Stem Cells Osteogenesis Differentiation by Activating Wnt/β-Catenin Signaling Pathway and Promotes Rat Skull Defect Repair,” Stem Cells and Development 29, no. 10 (2020): 655-666, https://doi.org/10.1089/scd.2019.0148.

[74]

W. H. Gaskell, “The Electrical Changes in the Quiescent Cardiac Muscle Which Accompany Stimulation of the Vagus Nerve,” Journal of Physiology 7, no. 5-6 (1886): 451-452, https://doi.org/10.1113/jphysiol.1886.sp000235.

[75]

J. K. Penry and J. C. Dean, “Prevention of Intractable Partial Seizures by Intermittent Vagal Stimulation in Humans: Preliminary Results,” Epilepsia 31, no. 2 (1990): S40-S43, https://doi.org/10.1111/j.1528-1157.1990.tb05848.x.

[76]

A. J. Rush, L. B. Marangell, H. A. Sackeim, et al., “Vagus Nerve Stimulation for Treatment-Resistant Depression: A Randomized, Controlled Acute Phase Trial,” Biological Psychiatry 58, no. 5 (2005): 347-354, https://doi.org/10.1016/j.biopsych.2005.05.025.

[77]

D. J. Lee, H. C. Tseng, S. W. Wong, Z. Wang, M. Deng, and C. C. Ko, “Dopaminergic Effects on In Vitro Osteogenesis,” Bone Research 3 (2015): 15020, https://doi.org/10.1038/boneres.2015.20.

[78]

E. N. Komegae, D. G. S. Farmer, V. L. Brooks, M. J. McKinley, R. M. McAllen, and D. Martelli, “Vagal Afferent Activation Suppresses Systemic Inflammation via the Splanchnic Anti-Inflammatory Pathway,” Brain, Behavior, and Immunity 73 (2018): 441-449, https://doi.org/10.1016/j.bbi.2018.06.005.

[79]

L. V. Borovikova, S. Ivanova, M. Zhang, et al., “Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin,” Nature 405, no. 6785 (2000): 458-462, https://doi.org/10.1038/35013070.

[80]

K. Polzer, L. Joosten, J. Gasser, et al., “Interleukin-1 is Essential for Systemic Inflammatory Bone Loss,” Annals of the Rheumatic Diseases 69, no. 1 (2010): 284-290, https://doi.org/10.1136/ard.2008.104786.

[81]

H. D. Simpson, A. Schulze-Bonhage, G. D. Cascino, et al., “Practical Considerations in Epilepsy Neurostimulation,” Epilepsia 63, no. 10 (2022): 2445-2460, https://doi.org/10.1111/epi.17329.

[82]

A. Schulze-Bonhage, “Long-Term Outcome in Neurostimulation of Epilepsy,” Epilepsy & Behavior 91 (2019): 25-29, https://doi.org/10.1016/j.yebeh.2018.06.011.

[83]

J. S. Kim, D. Y. Kim, H. J. Jo, et al., “Effect of Long-Term Treatment With Vagus Nerve Stimulation on Mood and Quality of Life in Korean Patients With Drug-Resistant Epilepsy,” Journal of Clinical Neurology (Seoul, Korea) 17, no. 3 (2021): 385-392, https://doi.org/10.3988/jcn.2021.17.3.385.

[84]

L. Broderick, G. Tuohy, O. Solymos, et al., “Management of Vagus Nerve Stimulation Therapy in the Peri-Operative Period: Guidelines From the Association of Anaesthetists,” Anaesthesia 78, no. 6 (2023): 747-757, https://doi.org/10.1111/anae.16012.

[85]

M. Lampros, N. Vlachos, A. Zigouris, S. Voulgaris, and G. A. Alexiou, “Transcutaneous Vagus Nerve Stimulation (t-VNS) and Epilepsy: A Systematic Review of the Literature,” Seizure 91 (2021): 40-48, https://doi.org/10.1016/j.seizure.2021.05.017.

[86]

Y. Wang, S. Y. Li, D. Wang, et al., “Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application,” Neuroscience Bulletin 37, no. 6 (2021): 853-862, https://doi.org/10.1007/s12264-020-00619-y.

[87]

P. Rong, A. Liu, J. Zhang, et al., “An Alternative Therapy for Drug-Resistant Epilepsy: Transcutaneous Auricular Vagus Nerve Stimulation,” Chinese Medical Journal 127, no. 2 (2014): 300-304.

[88]

C. H. Liu, M. H. Yang, G. Z. Zhang, et al., “Neural Networks and the Anti-Inflammatory Effect of Transcutaneous Auricular Vagus Nerve Stimulation in Depression,” Journal of Neuroinflammation 17 (2020): 54, https://doi.org/10.1186/s12974-020-01732-5.

[89]

C. Tan, M. Qiao, Y. Ma, Y. Luo, J. Fang, and Y. Yang, “The Efficacy and Safety of Transcutaneous Auricular Vagus Nerve Stimulation in the Treatment of Depressive Disorder: A Systematic Review and Meta-Analysis of Randomized Controlled Trials,” Journal of Affective Disorders 337 (2023): 37-49, https://doi.org/10.1016/j.jad.2023.05.048.

[90]

D. T. Ubbink and H. Vermeulen, “Spinal Cord Stimulation for Non-Reconstructable Chronic Critical Leg Ischaemia,” Cochrane Database of Systematic Reviews 2013, no. 2 (2013): CD004001, https://doi.org/10.1002/14651858.CD004001.pub3.

[91]

Q. Wu, X. Cui, L. C. Guan, et al., “Chronic Pain After Spine Surgery: Insights Into Pathogenesis, New Treatment, and Preventive Therapy,” Journal of Orthopaedic Translation 42 (2023): 147-159, https://doi.org/10.1016/j.jot.2023.07.003.

[92]

H. Shanthanna, S. Eldabe, D. A. Provenzano, et al., “Role of Patient Selection and Trial Stimulation for Spinal Cord Stimulation Therapy for Chronic Non-Cancer Pain: A Comprehensive Narrative Review,” Regional Anesthesia and Pain Medicine 48, no. 6 (2023): 251-272, https://doi.org/10.1136/rapm-2022-103820.

[93]

E. A. Petersen, T. G. Stauss, J. A. Scowcroft, et al., “Effect of High-Frequency (10-kHz) Spinal Cord Stimulation in Patients With Painful Diabetic Neuropathy: A Randomized Clinical Trial,” JAMA Neurology 78, no. 6 (2021): 687-698, https://doi.org/10.1001/jamaneurol.2021.0538.

[94]

H. Knotkova, C. Hamani, E. Sivanesan, et al., “Neuromodulation for Chronic Pain,” Lancet 397, no. 10289 (2021): 2111-2124, https://doi.org/10.1016/S0140-6736(21)00794-7.

[95]

L. Kapural, C. Yu, M. W. Doust, et al., “Comparison of 10-kHz High-Frequency and Traditional Low-Frequency Spinal Cord Stimulation for the Treatment of Chronic Back and Leg Pain: 24-Month Results From a Multicenter, Randomized, Controlled Pivotal Trial,” Neurosurgery 79, no. 5 (2016): 667-677, https://doi.org/10.1227/NEU.0000000000001418.

[96]

T. Deer, K. V. Slavin, K. Amirdelfan, et al., “Success Using Neuromodulation With BURST (SUNBURST) Study: Results From a Prospective, Randomized Controlled Trial Using a Novel Burst Waveform,” Neuromodulation 21, no. 1 (2018): 56-66, https://doi.org/10.1111/ner.12698.

[97]

T. R. Deer, R. M. Levy, J. Kramer, et al., “Dorsal Root Ganglion Stimulation Yielded Higher Treatment Success Rate for Complex Regional Pain Syndrome and Causalgia at 3 and 12 Months: A Randomized Comparative Trial,” Pain 158, no. 4 (2017): 669-681, https://doi.org/10.1097/j.pain.0000000000000814.

[98]

P. J. Mease, S. Hanna, E. P. Frakes, and R. D. Altman, “Pain Mechanisms in Osteoarthritis: Understanding the Role of Central Pain and Current Approaches to Its Treatment,” Journal of Rheumatology 38, no. 8 (2011): 1546-1551, https://doi.org/10.3899/jrheum.100759.

[99]

C. H. T. Kwok, Y. Kohro, M. Mousseau, et al., “Role of Primary Afferents in Arthritis Induced Spinal Microglial Reactivity,” Frontiers in Immunology 12 (2021): 626884, https://doi.org/10.3389/fimmu.2021.626884.

[100]

D. F. Martins, F. J. F. Viseux, D. C. Salm, et al., “The Role of the Vagus Nerve in Fibromyalgia Syndrome,” Neuroscience and Biobehavioral Reviews 131 (2021): 1136-1149, https://doi.org/10.1016/j.neubiorev.2021.10.021.

[101]

A. Monaco, R. Cattaneo, L. Mesin, I. Ciarrocchi, F. Sgolastra, and D. Pietropaoli, “Dysregulation of the Autonomous Nervous System in Patients With Temporomandibular Disorder: A Pupillometric Study,” PLoS One 7, no. 9 (2012): e45424, https://doi.org/10.1371/journal.pone.0045424.

[102]

I. B. McInnes and G. Schett, “The Pathogenesis of Rheumatoid Arthritis,” New England Journal of Medicine 365, no. 23 (2011): 2205-2219, https://doi.org/10.1056/NEJMra1004965.

[103]

J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid Arthritis,” Lancet 388, no. 10055 (2016): 2023-2038, https://doi.org/10.1016/S0140-6736(16)30173-8.

[104]

T. Takeuchi, H. Yoshida, and S. Tanaka, “Role of Interleukin-6 in Bone Destruction and Bone Repair in Rheumatoid Arthritis,” Autoimmunity Reviews 20, no. 9 (2021): 102884, https://doi.org/10.1016/j.autrev.2021.102884.

[105]

M. A. van Maanen, M. J. Ver Voordeldonk, and P. P. Tak, “The Cholinergic Anti-Inflammatory Pathway: Towards Innovative Treatment of Rheumatoid Arthritis,” Nature Reviews Rheumatology 5, no. 4 (2009): 229-232, https://doi.org/10.1038/nrrheum.2009.31.

[106]

Y. A. Levine, F. A. Koopman, M. Faltys, et al., “Neurostimulation of the Cholinergic Anti-Inflammatory Pathway Ameliorates Disease in Rat Collagen-Induced Arthritis,” PLoS One 9, no. 8 (2014): e104530, https://doi.org/10.1371/journal.pone.0104530.

[107]

F. A. Koopman, S. S. Chavan, S. Miljko, et al., “Vagus Nerve Stimulation Inhibits Cytokine Production and Attenuates Disease Severity in Rheumatoid Arthritis,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 29 (2016): 8284-8289, https://doi.org/10.1073/pnas.1605635113.

[108]

M. C. Genovese, N. B. Gaylis, D. Sikes, et al., “Safety and Efficacy of Neurostimulation With a Miniaturised Vagus Nerve Stimulation Device in Patients With Multidrug-Refractory Rheumatoid Arthritis: A Two-Stage Multicentre, Randomised Pilot Study,” Lancet Rheumatology 2, no. 9 (2020): e527-e538, https://doi.org/10.1016/S2665-9913(20)30172-7.

[109]

S. Marsal, H. Corominas, J. J. de Agustín, et al., “Non-Invasive Vagus Nerve Stimulation for Rheumatoid Arthritis: A Proof-of-Concept Study,” Lancet Rheumatology 3, no. 4 (2021): e262-e269, https://doi.org/10.1016/S2665-9913(20)30425-2.

[110]

M. C. Baker, S. Kavanagh, S. Cohen, et al., “A Randomized, Double-Blind, Sham-Controlled, Clinical Trial of Auricular Vagus Nerve Stimulation for the Treatment of Active Rheumatoid Arthritis,” Arthritis & Rheumatology (Hoboken, NJ) 75, no. 12 (2023): 2107-2115, https://doi.org/10.1002/art.42637.

[111]

S. R. Goldring and M. B. Goldring, “Changes in the Osteochondral Unit During Osteoarthritis: Structure, Function and Cartilage-Bone Crosstalk,” Nature Reviews Rheumatology 12, no. 11 (2016): 632-644, https://doi.org/10.1038/nrrheum.2016.148.

[112]

H. Fang, L. Huang, I. Welch, et al., “Early Changes of Articular Cartilage and Subchondral Bone in the DMM Mouse Model of Osteoarthritis,” Scientific Reports 8, no. 1 (2018): 2855, https://doi.org/10.1038/s41598-018-21184-5.

[113]

Y. Hu, X. Chen, S. Wang, Y. Jing, and J. Su, “Subchondral Bone Microenvironment in Osteoarthritis and Pain,” Bone Research 9 (2021): 20, https://doi.org/10.1038/s41413-021-00147-z.

[114]

G. Rösch, F. Zaucke, and Z. Jenei-Lanzl, “Autonomic Nervous Regulation of Cellular Processes During Subchondral Bone Remodeling in Osteoarthritis,” American Journal of Physiology. Cell Physiology 325, no. 2 (2023): C365-C384, https://doi.org/10.1152/ajpcell.00039.2023.

[115]

H. Wang, M. Yu, M. Ochani, et al., “Nicotinic Acetylcholine Receptor Alpha7 Subunit is an Essential Regulator of Inflammation,” Nature 421, no. 6921 (2003): 384-388, https://doi.org/10.1038/nature01339.

[116]

A. Courties, C. Deprouw, E. Maheu, et al., “Effect of Transcutaneous Vagus Nerve Stimulation in Erosive Hand Osteoarthritis: Results From a Pilot Trial,” Journal of Clinical Medicine 11, no. 4 (2022): 1087, https://doi.org/10.3390/jcm11041087.

[117]

J. Sieper, J. Braun, M. Dougados, and D. Baeten, “Axial Spondyloarthritis,” Nature Reviews. Disease Primers 1 (2015): 15013, https://doi.org/10.1038/nrdp.2015.13.

[118]

S. Herman, G. Krönke, and G. Schett, “Molecular Mechanisms of Inflammatory Bone Damage: Emerging Targets for Therapy,” Trends in Molecular Medicine 14, no. 6 (2008): 245-253, https://doi.org/10.1016/j.molmed.2008.04.001.

[119]

C. Brock, S. E. Rasmussen, A. M. Drewes, et al., “Vagal Nerve Stimulation-Modulation of the Anti-Inflammatory Response and Clinical Outcome in Psoriatic Arthritis or Ankylosing Spondylitis,” Mediators of Inflammation 2021 (2021): 9933532, https://doi.org/10.1155/2021/9933532.

[120]

E. Azabou, G. Bao, F. Costantino, et al., “Randomized Cross Over Study Assessing the Efficacy of Non-Invasive Stimulation of the Vagus Nerve in Patients With Axial Spondyloarthritis Resistant to Biotherapies: The ESNV-SPA Study Protocol,” Frontiers in Human Neuroscience 15 (2021): 679775, https://doi.org/10.3389/fnhum.2021.679775.

[121]

A. Zablotni, O. Dakischew, K. Trinkaus, et al., “Regulation of Acetylcholine Receptors During Differentiation of Bone Mesenchymal Stem Cells Harvested From Human Reaming Debris,” International Immunopharmacology 29, no. 1 (2015): 119-126, https://doi.org/10.1016/j.intimp.2015.07.021.

[122]

S. Alqahtani, M. C. Butcher, G. Ramage, M. J. Dalby, W. McLean, and C. J. Nile, “Acetylcholine Receptors in Mesenchymal Stem Cells,” Stem Cells and Development 32, no. 3-4 (2023): 47-59, https://doi.org/10.1089/scd.2022.0201.

[123]

I. Tamimi, T. Ojea, J. M. Sanchez-Siles, et al., “Acetylcholinesterase Inhibitors and the Risk of Hip Fracture in Alzheimer's Disease Patients: A Case-Control Study,” Journal of Bone and Mineral Research 27, no. 7 (2012): 1518-1527, https://doi.org/10.1002/jbmr.1616.

[124]

I. Tamimi, B. Nicolau, H. Eimar, et al., “Acetylcholinesterase Inhibitors and the Risk of Osteoporotic Fractures: Nested Case-Control Study,” Osteoporosis International 29, no. 4 (2018): 849-857, https://doi.org/10.1007/s00198-017-4346-z.

[125]

A. N. Ogunwale, C. S. Colon-Emeric, R. Sloane, R. A. Adler, K. W. Lyles, and R. H. Lee, “Acetylcholinesterase Inhibitors Are Associated With Reduced Fracture Risk Among Older Veterans With Dementia,” Journal of Bone and Mineral Research 35, no. 3 (2020): 440-445, https://doi.org/10.1002/jbmr.3916.

[126]

H. Eimar, S. Alebrahim, G. Manickam, et al., “Donepezil Regulates Energy Metabolism and Favors Bone Mass Accrual,” Bone 84 (2016): 131-138, https://doi.org/10.1016/j.bone.2015.12.009.

[127]

A. Tamimi, F. Tamimi, M. Juweid, et al., “Could Vagus Nerve Stimulation Influence Bone Remodeling?,” Journal of Musculoskeletal & Neuronal Interactions 21, no. 2 (2021): 255-262.

[128]

U. A. Liberman, S. R. Weiss, J. Bröll, et al., “Effect of Oral Alendronate on Bone Mineral Density and the Incidence of Fractures in Postmenopausal Osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group,” New England Journal of Medicine 333, no. 22 (1995): 1437-1443, https://doi.org/10.1056/NEJM199511303332201.

[129]

S. P. Cohen and J. Mao, “Neuropathic Pain: Mechanisms and Their Clinical Implications,” BMJ 348 (2014): f7656, https://doi.org/10.1136/bmj.f7656.

[130]

C. Fernández-Morales, L. Espejo-Antúnez, M. d. L. Á. Cardero-Durán, D. Falla, J. M. Moreno-Vázquez, and M. Albornoz-Cabello, “Psychophysiological Responses to a Multimodal Physiotherapy Program in Fighter Pilots With Flight-Related Neck Pain: A Pilot Trial,” PLoS One 19, no. 7 (2024): e0306708, https://doi.org/10.1371/journal.pone.0306708.

[131]

L. M. Tracy, L. Ioannou, K. S. Baker, S. J. Gibson, N. Georgiou-Karistianis, and M. J. Giummarra, “Meta-Analytic Evidence for Decreased Heart Rate Variability in Chronic Pain Implicating Parasympathetic Nervous System Dysregulation,” Pain 157, no. 1 (2016): 7-29, https://doi.org/10.1097/j.pain.0000000000000360.

[132]

L. Espejo-Antúnez, C. Fernández-Morales, M. d. L. Á. Cardero-Durán, J. V. Toledo-Marhuenda, J. A. Díaz-Mancha, and M. Albornoz-Cabello, “Detection of Changes on Parameters Related to Heart Rate Variability After Applying Current Interferential Therapy in Subjects With Non-Specific Low Back Pain,” Diagnostics (Basel, Switzerland) 11, no. 12 (2021): 2175, https://doi.org/10.3390/diagnostics11122175.

[133]

Y. Gidron, R. Deschepper, M. De Couck, J. F. Thayer, and B. Velkeniers, “The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health,” Journal of Clinical Medicine 7, no. 10 (2018): 371, https://doi.org/10.3390/jcm7100371.

RIGHTS & PERMISSIONS

2025 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/