2D and 3D Classification Systems for Adolescent Idiopathic Scoliosis: Clinical Implications and Technological Advances

Wenqing Wei , Liang Cheng , Yating Dong , Tianyuan Zhang , Yaolong Deng , Jiale Gong , Fang Xie , Junlin Yang

Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (4) : 999 -1020.

PDF
Orthopaedic Surgery ›› 2025, Vol. 17 ›› Issue (4) : 999 -1020. DOI: 10.1111/os.14362
REVIEW ARTICLE

2D and 3D Classification Systems for Adolescent Idiopathic Scoliosis: Clinical Implications and Technological Advances

Author information +
History +
PDF

Abstract

Classification systems for Adolescent Idiopathic Scoliosis (AIS) play an important role in guiding both surgical planning and conservative treatments. Traditional 2D classification systems, such as the Lenke, King and Lehnert-Schroth classifications, have been widely used for the clinical diagnosis and treatment of scoliosis. However, with the growing understanding of the three-dimensional nature of scoliosis and advancements in 3D reconstruction technologies, 3D classification systems are gaining increasing attention. This paper reviews the current applications, advantages, and limitations of different 2D and 3D classification systems, focusing on their clinical significance in treatment planning. While 3D classification systems offer clear advantages in capturing the complexity of spinal deformities, their clinical implementation faces challenges such as high costs and technical complexity. Additionally, studies show that computer-assisted technologies, artificial intelligence can significantly improve the accuracy and consistency of classification systems, reducing human errors. The paper also explores the future directions of classification system development, emphasizing the potential of combining 2D and 3D technologies and the impact of these advancements on personalized scoliosis treatment.

Keywords

3D classification / adolescent idiopathic scoliosis / King classification / Lenke classification / PUMC classification / Rigo classification / Schroth classification

Cite this article

Download citation ▾
Wenqing Wei, Liang Cheng, Yating Dong, Tianyuan Zhang, Yaolong Deng, Jiale Gong, Fang Xie, Junlin Yang. 2D and 3D Classification Systems for Adolescent Idiopathic Scoliosis: Clinical Implications and Technological Advances. Orthopaedic Surgery, 2025, 17(4): 999-1020 DOI:10.1111/os.14362

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. S. Illes, F. Lavaste, and J. F. Dubousset, “The Third Dimension of Scoliosis: The Forgotten Axial Plane,” Orthopaedics & Traumatology: Surgery & Research 105 (2019): 351-359, https://doi.org/10.1016/j.otsr.2018.10.021.

[2]

W. Wei, T. Zhang, Z. Huang, and J. Yang, “Finite Element Analysis in Brace Treatment on Adolescent Idiopathic Scoliosis,” Medical & Biological Engineering & Computing 60 (2022): 907-920, https://doi.org/10.1007/s11517-022-02524-0.

[3]

R. Dayer, T. Haumont, W. Belaieff, and P. Lascombes, “Idiopathic Scoliosis: Etiological Concepts and Hypotheses,” Journal of Children's Orthopaedics 7 (2013): 11-16, https://doi.org/10.1007/s11832-012-0458-3.

[4]

M. R. Konieczny, H. Senyurt, and R. Krauspe, “Epidemiology of Adolescent Idiopathic Scoliosis,” Journal of Children's Orthopaedics 7 (2013): 3-9, https://doi.org/10.1007/s11832-012-0457-4.

[5]

J. C. Cheng, R. M. Castelein, W. C. Chu, et al., “Adolescent Idiopathic Scoliosis,” Nature Reviews. Disease Primers 1 (2015): 15030, https://doi.org/10.1038/nrdp.2015.30.

[6]

S. Negrini, S. Donzelli, A. G. Aulisa, et al., “2016 SOSORT Guidelines: Orthopaedic and Rehabilitation Treatment of Idiopathic Scoliosis During Growth,” Scoliosis and Spinal Disorders 13 (2018): 3, https://doi.org/10.1186/s13013-017-0145-8.

[7]

C. M. Del Prete, D. Tarantino, M. G. Viva, et al., “Spinal Orthosis in Adolescent Idiopathic Scoliosis: An Overview of the Braces Provided by the National Health Service in Italy,” Medicina (Kaunas, Lithuania) 60 (2024): 3, https://doi.org/10.3390/medicina60010003.

[8]

T. Y. Zhang, Z. F. Huang, W. Y. Sui, et al., “Intensive Bracing Management Combined With Physiotherapeutic Scoliosis-Specific Exercises for Adolescent Idiopathic Scoliosis Patients With a Major Curve Ranging From 40-60? Who Refused Surgery: A Prospective Cohort Study,” European Journal of Physical and Rehabilitation Medicine 59 (2023): 212-221, https://doi.org/10.23736/s1973-9087.23.07605-0.

[9]

R. J. Mistovich, L. A. Blumenschein, and M. P. Glotzbecker, “Surgical Level Selection in Adolescent Idiopathic Scoliosis: An Evidence-Based Approach,” Journal of the American Academy of Orthopaedic Surgeons 31 (2023): 373-381, https://doi.org/10.5435/jaaos-d-22-00547.

[10]

W. Kim, J. A. Porrino, K. A. Hood, T. S. Chadaz, A. S. Klauser, and M. S. Taljanovic, “Clinical Evaluation, Imaging, and Management of Adolescent Idiopathic and Adult Degenerative Scoliosis,” Current Problems in Diagnostic Radiology 48 (2019): 402-414, https://doi.org/10.1067/j.cpradiol.2018.08.006.

[11]

K. Menon, “Classification Systems in Adolescent Idiopathic Scoliosis Revisited: Is a Three-Dimensional Classification Needed?,” Indian Spine Journal 3 (2020): 143-150, https://doi.org/10.4103/isj.isj_74_19.

[12]

I. V. Ponseti, B. Friedman, and B. Friedman, “Prognosis in Idiopathic Scoliosis,” Journal of Bone and Joint Surgery. American Volume 32-A (1950): 381-395, https://doi.org/10.2106/00004623-195032020-00017.

[13]

D. Ovadia, “Classification of Adolescent Idiopathic Scoliosis (AIS),” Journal of Children's Orthopaedics 7 (2013): 25-28, https://doi.org/10.1007/s11832-012-0459-2.

[14]

H. A. King, J. H. Moe, D. S. Bradford, and R. B. Winter, “The Selection of Fusion Levels in Thoracic Idiopathic Scoliosis,” Journal of Bone and Joint Surgery. American Volume 65 (1983): 1302-1313, https://doi.org/10.2106/00004623-198365090-00012.

[15]

L. G. Lenke, R. R. Betz, J. Harms, et al., “Adolescent Idiopathic Scoliosis,” Journal of Bone and Joint Surgery. American Volume 83A (2001): 1169-1181, https://doi.org/10.2106/00004623-200108000-00006.

[16]

M. Rigo and M. Jelacic, “Brace Technology Thematic Series: The 3D Rigo Cheneau-Type Brace,” Scoliosis and Spinal Disorders 12 (2017): 1-10, https://doi.org/10.1186/s13013-017-0114-2.

[17]

H.-R. Weiss, “The Method of Katharina Schroth - History, Principles and Current Development,” Scoliosis 6 (2011): 1-46, https://doi.org/10.1186/1748-7161-6-17.

[18]

I. A. F. Stokes, “3-Dimensional Terminology of Spinal Deformity: A Report Presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D Terminology of Spinal Deformity,” Spine 19 (1994): 236-248, https://doi.org/10.1097/00007632-199401001-00020.

[19]

H. Hosseinpour-Feizi, J. Soleimanpour, J. G. Sales, et al., “Lenke and King Classification Systems for Adolescent Idiopathic Scoliosis: Interobserver Agreement and Postoperative Results,” International Journal of General Medicine 4 (2011): 821-825, https://doi.org/10.2147/ijgm.S25403.

[20]

Y. Qiu, Z. Zhu, F. Zhu, et al., “Comparison of Interobserver and Intraobserver Reliability Between the King, Lenke and PUMC Classification Systems for Adolescent Idiopathic Scoliosis,” Chinese Journal of Orthopaedics 27 (2007): 748-752.

[21]

B. S. Richards, D. J. Sucato, D. E. Konigsberg, et al., “Comparison of Reliability Between the Lenke and King Classification Systems for Adolescent Idiopathic Scoliosis Using Radiographs That Were Not Premeasured,” Spine 28 (2003): 1148-1156, https://doi.org/10.1097/00007632-200306010-00012.

[22]

T. Niemeyer, A. Wolf, S. Kluba, H. F. Halm, K. Dietz, and T. Kluba, “Interobserver and Intraobserver Agreement of Lenke and King Classifications for Idiopathic Scoliosis and the Influence of Level of Professional Training,” Spine 31 (2006): 2103-2107, https://doi.org/10.1097/01.brs.0000231434.93884.c9.

[23]

Z. Chen, Y. Hai, X. Chen, et al., “The Surgical Treatment of King Type Iadolescent Idiopathic Scoliosis,” Chinese Journal of Spine and Spinal Cord 14 (2004): 211-214, https://doi.org/10.3969/j.issn.1004-406X.2004.04.005.

[24]

D. P. Roye, J. P. Farcy, J. B. Rickert, et al., “Results of Spinal Instrumentation of Adolescent Idiopathic Scoliosis by King Type,” Spine 17 (1992): S270-S273, https://doi.org/10.1097/00007632-199208001-00010.

[25]

R. E. McCall and B. William, “Criteria for Selective Fusion in Idiopathic Scoliosis Using Cotrel-Dubousset Instrumentation,” Journal of Pediatric Orthopedics 12 (1992): 475-479, https://doi.org/10.1097/01241398-199207000-00011.

[26]

S. Trzcinska, M. Kuszewski, and K. Koszela, “Analysis of Posture Parameters in Patients With Idiopathic Scoliosis With the Use of 3D Ultrasound Diagnostics-Preliminary Results,” International Journal of Environmental Research and Public Health 19 (2022): 4750, https://doi.org/10.3390/ijerph19084750.

[27]

S. Trzcinska, K. Koszela, and M. Kuszewski, “Effectiveness of the FED Method in the Treatment of Idiopathic Scoliosis of Girls Aged 11-15 Years,” International Journal of Environmental Research and Public Health 19 (2022): 65, https://doi.org/10.3390/ijerph19010065.

[28]

C. S. Lee, S. Park, D.-H. Lee, et al., “Is the Combination of Convex Compression for the Proximal Thoracic Curve and Concave Distraction for the Main Thoracic Curve Using Separate-Rod Derotation Effective for Correcting Shoulder Balance and Thoracic Kyphosis?,” Clinical Orthopaedics and Related Research 479 (2021): 1347-1356, https://doi.org/10.1097/corr.0000000000001643.

[29]

G. Qiu, Q. Li, Y. Wang, et al., “Comparison of Reliability Between the PUMC and Lenke Classification Systems for Classifying Adolescent Idiopathic Scoliosis,” Spine 33 (2008): E836-E842, https://doi.org/10.1097/BRS.0b013e318187bb10.

[30]

B. Schlager, M. Grosskinsky, M. Ruf, et al., “Range of Surgical Strategies for Individual Adolescent Idiopathic Scoliosis Cases: Evaluation of a Multi-Centre Survey,” Spine Deformity 12 (2024): 35-46, https://doi.org/10.1007/s43390-023-00756-0.

[31]

K. Mori, J. Takahashi, H. Oba, T. Mimura, and S. Imai, “Reciprocal Change of Cervical Spine After Posterior Spinal Fusion for Lenke Type 1 and 2 Adolescent Idiopathic Scoliosis,” Journal of Clinical Medicine 12 (2023): 5599, https://doi.org/10.3390/jcm12175599.

[32]

J. Li, K. Deng, Y. Tang, et al., “Postoperative Alterations of Sagittal Cervical Alignment and Risk Factors for Cervical Kyphosis in 124 Lenke 1 Adolescent Idiopathic Scoliosis Patients,” BMC Musculoskeletal Disorders 22 (2021): 84, https://doi.org/10.1186/s12891-021-04884-4.

[33]

B. Garg, N. Mehta, A. Gupta, et al., “Cervical Sagittal Alignment in Lenke 1 Adolescent Idiopathic Scoliosis and Assessment of Its Alteration With Surgery: A Retrospective, Multi-Centric Study,” Spine Deformity 9 (2021): 1559-1568, https://doi.org/10.1007/s43390-021-00366-8.

[34]

C. Y. Wei Chan, C. K. Chiu, Y. H. Ng, et al., “An Analysis of Preoperative Shoulder and Neck Balance and Surgical Outcome in 111 Adolescent Idiopathic Scoliosis Patients With Two Subtypes of Lenke 1 Curves,” Journal of Neurosurgery. Spine 34 (2020): 37-44, https://doi.org/10.3171/2020.5.SPINE20397.

[35]

T. Akazawa, S. Kuroya, T. Kotani, et al., “Anchor Type at Upper Instrumented Vertebra and Postoperative Shoulder Imbalance in Patients With Lenke Type 1 Adolescent Idiopathic Scoliosis,” European Journal of Orthopaedic Surgery and Traumatology 31 (2021): 245-251, https://doi.org/10.1007/s00590-020-02766-4.

[36]

B. L. Dial, V. R. Esposito, A. A. Catanzano, R. D. Fitch, and R. K. Lark, “Implant Distribution Versus Implant Density in Lenke Type 1 Adolescent Idiopathic Scoliosis: Does the Position of the Screw Matter?,” Global Spine Journal 11 (2021): 1076-1082, https://doi.org/10.1177/2192568220941456.

[37]

J. M. Mac-Thiong, S. Ibrahim, S. Parent, and H. Labelle, “Defining the Number and Type of Fixation Anchors for Optimal Main Curve Correction in Posterior Surgery for Adolescent Idiopathic Scoliosis,” Spine Journal 17 (2017): 663-670, https://doi.org/10.1016/j.spinee.2016.11.012.

[38]

M. Luo, M. K. Shen, W. G. Wang, and L. Xia, “Comparison of Consecutive, Interval, and Skipped Pedicle Screw Techniques in Moderate Lenke Type 1 Adolescent Idiopathic Scoliosis,” World Neurosurgery 98 (2017): 563-570, https://doi.org/10.1016/j.wneu.2016.11.064.

[39]

M. K. Shen, H. H. Jiang, M. Luo, et al., “Comparison of Low-Density and High-Density Pedicle Screw Instrumentation in Lenke 1 Adolescent Idiopathic Scoliosis,” BMC Musculoskeletal Disorders 18 (2017): 336, https://doi.org/10.1186/s12891-017-1695-x.

[40]

P. Laumonerie, M. E. Tibbo, P. Kerezoudis, T. Langlais, J. S. de Gauzy, and F. Accadbled, “Influence of the Sublaminar Band Density in the Treatment of Lenke 1 Adolescent Idiopathic Scoliosis,” Orthopaedics & Traumatology, Surgery & Research 106 (2020): 1269-1274, https://doi.org/10.1016/j.otsr.2019.10.021.

[41]

H. Shigematsu, J. P. Y. Cheung, M. Bruzzone, et al., “Preventing Fusion Mass Shift Avoids Postoperative Distal Curve Adding-On in Adolescent Idiopathic Scoliosis,” Clinical Orthopaedics and Related Research 475 (2017): 1448-1460, https://doi.org/10.1007/s11999-016-5216-2.

[42]

Y. Li, J. Li, K. D. K. Luk, C. Zhang, J. Sun, and G. Wang, “Relationship Between Fusion Mass Shift and Postoperative Distal Adding-On in Lenke 1 Adolescent Idiopathic Scoliosis After Selective Thoracic Fusion,” Asian Spine Journal 17 (2023): 1117-1124, https://doi.org/10.31616/asj.2022.0466.

[43]

Y. Sakai, S. Takenaka, T. Makino, H. Yoshikawa, and T. Kaito, “Postoperative T1 Tilt Is a Risk Factor for Postoperative Distal Adding-On in Lenke Type 1 Adolescent Idiopathic Scoliosis: A Preliminary Report,” Medicine 99 (2020): 19983, https://doi.org/10.1097/md.0000000000019983.

[44]

K. Chen, X. Zhai, T. Zhou, et al., “Characteristics Analysis of Segmental and Regional Lumbar Spontaneous Compensation Post Thoracic Fusion in Lenke 1 and 2 Adolescent Idiopathic Scoliosis,” BMC Musculoskeletal Disorders 22 (2021): 935, https://doi.org/10.1186/s12891-021-04821-5.

[45]

Z. Cai, Z. Zhu, and Y. Qiu, “Research Progress in Spontaneous Lumbar Curve Correction After Selective Thoracic Fusion in Lenke 1 and 2 Adolescent Idiopathic Scoliosis,” Chinese Journal of Spine and Spinal Cord 33 (2023): 270-273.

[46]

M. Ruf, J. Drumm, and D. Jeszenszky, “Anterior Instrumented Fusion for Adolescent Idiopathic Scoliosis,” Annals of Translational Medicine 8 (2020): 31, https://doi.org/10.21037/atm.2019.11.84.

[47]

H. Gu, Y. Li, Y. Dai, and B. Wang, “Anterior Versus Posterior Approach in Lenke Type 1 Adolescent Idiopathic Scoliosis: A Comparison of Long-Term Follow-Up Outcomes,” Annals of Translational Medicine 10 (2022): 405, https://doi.org/10.21037/atm-22-573.

[48]

S. Ifthekar, K. Ahuja, P. V. Sudhakar, et al., “Is It Safe to Save Levels and Choose the Lowest Instrumented Vertebra as Touched Vertebra While Selectively Fusing Lenke 1/2 Curves? A Proportional Meta-Analysis of Existing Evidence,” Global Spine Journal 13 (2023): 219-226, https://doi.org/10.1177/21925682221091744.

[49]

Z. Deng, L. Wang, L. Wang, et al., “Incidence and Risk Factors of Postoperative Medial Shoulder Imbalance in Lenke Type 2 Adolescent Idiopathic Scoliosis With Lateral Shoulder Balance,” BMC Musculoskeletal Disorders 23 (2022): 947, https://doi.org/10.1186/s12891-022-05882-w.

[50]

S. Zhou, X. Zou, Z. Pan, et al., “Risks of Postoperative Shoulder Imbalance in Lenke Type 2 Adolescent Idiopathic Scoliosis,” Journal of Chongqing Medical University 42 (2017): 134-139, https://doi.org/10.13406/j.cnki.cyxb.001152.

[51]

N. Isogai, M. Yagi, N. Otomo, et al., “Upper End Vertebra of Proximal Thoracic Curve at T1 Is a Novel Risk Factor of Postoperative Shoulder Imbalance in Lenke Type 2 Adolescent Idiopathic Scoliosis,” Global Spine Journal 13 (2023): 1223-1228, https://doi.org/10.1177/21925682211023049.

[52]

H. R. Lee, C. J. Hwang, S. Y. Seok, et al., “Shoulder Balance in Lenke Type 2 Adolescent Idiopathic Scoliosis: Correlations Among Radiological Indices, Cosmetic Indices, and Patient-Reported Outcomes,” Journal of Neurosurgery. Spine 40 (2024): 700-707, https://doi.org/10.3171/2024.1.Spine231010.

[53]

T. Mimura, S. Ikegami, T. Banno, et al., “Usefulness of Modified S-Line for Upper Instrumented Vertebra Selection in Adolescent Idiopathic Scoliosis Lenke Type 2 Curves,” Scientific Reports 12 (2022): 16996, https://doi.org/10.1038/s41598-022-21274-5.

[54]

A. Duramaz, E. Karaali, V. Ozturk, et al., “Importance of Lowest Instrumented Vertebra on Clinical and Radiological Outcomes in Patients With Lenke Type 3C Adolescent Idiopathic Scoliosis: A Minimum 4-Year Follow-Up,” Journal of Pediatric Orthopaedics. Part B 29 (2020): 580-589, https://doi.org/10.1097/bpb.0000000000000696.

[55]

X. Shao, W. Sui, Y. Deng, J. Yang, J. Chen, and J. Yang, “How to Select the Lowest Instrumented Vertebra in Lenke 5/6 Adolescent Idiopathic Scoliosis Patients With Derotation Technique,” European Spine Journal 31 (2022): 996-1005, https://doi.org/10.1007/s00586-021-07040-7.

[56]

S. Shu, H. Bao, Y. Zhang, et al., “Selection of Distal Fusion Level for Lenke 5 Curve: Does the Rotation of the Presumed Lower Instrumented Vertebra Matter?,” Spine 45 (2020): E688-E693, https://doi.org/10.1097/brs.0000000000003375.

[57]

T. Okubo, M. Yagi, S. Suzuki, et al., “Does Selective Posterior Correction and Fusion Surgery Influence Cervical Sagittal Alignment in Patients With Lenke Type 5 Adolescent Idiopathic Scoliosis? A 5-Year Follow-Up Retrospective Cohort Study,” Spine 46 (2021): E976-E984, https://doi.org/10.1097/brs.0000000000003967.

[58]

J. Chen, H. Fan, W. Sui, et al., “Risk and Predictive Factors for Proximal Junctional Kyphosis in Patients Treated by Lenke Type 5 Adolescent Idiopathic Scoliosis Correction,” World Neurosurgery 147 (2021): E315-E323, https://doi.org/10.1016/j.wneu.2020.12.044.

[59]

Q. Zhou, B. Hu, X. Yang, et al., “Proximal Junctional Kyphosis in Lenke 5 AIS Patients: The Important Factor of Pelvic Incidence,” BMC Musculoskeletal Disorders 22 (2021): 185, https://doi.org/10.1186/s12891-021-04052-8.

[60]

L. Becker, Z. Li, Z. Wang, M. Pumberger, and F. Schömig, “Adolescent Idiopathic Scoliosis Is Associated With Muscle Area Asymmetries in the Lumbar Spine,” European Spine Journal 32 (2023): 3979-3986, https://doi.org/10.1007/s00586-023-07921-z.

[61]

S. Boulcourt, A. Badel, R. Pionnier, Y. Neder, B. Ilharreborde, and A. L. Simon, “A Gait Functional Classification of Adolescent Idiopathic Scoliosis (AIS) Based on Spatio-Temporal Parameters (STP),” Gait & Posture 102 (2023): 50-55, https://doi.org/10.1016/j.gaitpost.2023.03.002.

[62]

Y. Smorgick, E. Tamir, Y. Mirovsky, O. Rabau, D. Lindner, and Y. Anekstein, “Height Gain Prediction in Adolescent Idiopathic Scoliosis Based on Preoperative Parameters,” Journal of Pediatric Orthopedics 41 (2021): 502-506, https://doi.org/10.1097/bpo.0000000000001905.

[63]

J. Bai, B. Li, Y. Zhao, et al., “In Vivo Biomechanical Response Characteristic Curve in Lenke Type I Adolescent Idiopathic Scoliosis,” Academic Journal of Second Military Medical University 41 (2020): 1203-1207, https://doi.org/10.16781/j.0258-879x.2020.11.1203.

[64]

L. Helenius, M. Ahonen, J. Syvanen, et al., “Pulmonary Function at Minimum 10 Years After Segmental Pedicle Screw Instrumentation for Thoracic Adolescent Idiopathic Scoliosis,” Spine (2024), https://doi.org/10.1097/brs.0000000000004996.

[65]

M. A. P Incesoy, S. Seluk, O. I. Turk, et al., “Is Lenke Type V Adolescent Idiopathic Scoliosis Associated With Different Muscular Morphometry?,” Journal of Pediatric Orthopaedics. Part B 32 (2023): 363-368, https://doi.org/10.1097/bpb.0000000000001002.

[66]

S. Pesenti, V. Pomero, S. Prost, et al., “Curve Location Influences Spinal Balance in Coronal and Sagittal Planes but Not Transversal Trunk Motion in Adolescents With Idiopathic Scoliosis: A Prospective Observational Study,” European Spine Journal 29 (2020): 1972-1980, https://doi.org/10.1007/s00586-020-06361-3.

[67]

K. Politarczyk, M. Kozinoga, L. Stepniak, et al., “Spirometry Examination of Adolescents With Thoracic Idiopathic Scoliosis: Is Correction for Height Loss Useful?,” Journal of Clinical Medicine 10 (2021): 4877, https://doi.org/10.3390/jcm10214877.

[68]

K. W. Wu, T. W. Lu, W. C. Lee, et al., “Altered Balance Control in Thoracic Adolescent Idiopathic Scoliosis During Obstructed Gait,” PLoS One 15 (2020): e0228752, https://doi.org/10.1371/journal.pone.0228752.

[69]

J. D. Lin, J. A. Osorio, G. R. Baum, et al., “A New Modular Radiographic Classification of Adult Idiopathic Scoliosis as an Extension of the Lenke Classification of Adolescent Idiopathic Scoliosis,” Spine Deformity 9 (2021): 175-183, https://doi.org/10.1007/s43390-020-00181-7.

[70]

T. Mishiro, L. G. Lenke, L. A. Koester, et al., “Modified Lenke Classification System for Infantile and Juvenile Idiopathic Scoliosis: Poster #4,” Spine Journal Meeting Abstracts 10 (2009): 137.

[71]

J. O. Sanders, R. H. Browne, S. J. McConnell, et al., “Maturity Assessment and Curve Progression in Girls With Idiopathic Scoliosis,” Journal of Bone and Joint Surgery. American Volume 89A (2007): 64-73, https://doi.org/10.2106/jbjs.F.00067.

[72]

R. M. Thompson, E. W. Hubbard, C. H. Jo, D. Virostek, and L. A. Karol, “Brace Success Is Related to Curve Type in Patients With Adolescent Idiopathic Scoliosis,” Journal of Bone and Joint Surgery 99 (2017): 923-928, https://doi.org/10.2106/jbjs.16.01050.

[73]

H. Yi, H. Chen, J. Xu, et al., “Minimally Invasive Lateral Lumbar Interbody Fusion for Idiopathic Scoliosis,” Orthopedic Journal of China 28 (2020): 1235-1238, https://doi.org/10.3977/j.issn.1005-8478.2020.13.19.

[74]

J.-D. Metaizeau and D. Denis, “Posterior Vertebral Body Tethering: A Preliminary Study of a New Technique to Correct Lenke 5C Lumbar Curves in Adolescent Idiopathic Scoliosis,” Children (Basel) 11 (2024): 157, https://doi.org/10.3390/children11020157.

[75]

S. Froehlich, W. Mittelmeier, B. Desai, et al., “Surgical Treatment of Adolescent Idiopathic Scoliosis With the ApiFix Minimal Invasive Dynamic Correction System: A Preliminary Report of a 24-Month Follow-Up,” Life (Basel) 13 (2023): 2032, https://doi.org/10.3390/life13102032.

[76]

B. S. Widjaja and R. Varani, “Impact of Gensingen Brace Treatment on Lenke 5 Curvatures and Chronic Low Back Pain in Late Adolescent and Adult Scoliosis Patients,” South African Journal of Physiotherapy 78 (2022): 1585, https://doi.org/10.4102/sajp.v78i1.1585.

[77]

S. Pasha, “How Different the Scoliotic Curves Are?,” Studies in Health Technology and Informatics 280 (2021): 53-57, https://doi.org/10.3233/shti210434.

[78]

S. W. Jia, L. Y. Lin, H. F. Yang, et al., “Biodynamic Responses of Adolescent Idiopathic Scoliosis Exposed to Vibration,” Medical & Biological Engineering & Computing 61 (2023): 271-284, https://doi.org/10.1007/s11517-022-02710-0.

[79]

W. Q. Wei, T. Y. Zhang, J. L. Yang, Y. Qian, and Y. Dong, “Material Sensitivity of Patient-Specific Finite Element Models in the Brace Treatment of Scoliosis,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1111449, https://doi.org/10.3389/fbioe.2023.1111449.

[80]

Y. Yahara, S. Seki, H. Makino, H. Futakawa, K. Kamei, and Y. Kawaguchi, “Asymmetric Load Transmission Induces Facet Joint Subchondral Sclerosis and Hypertrophy in Patients With Idiopathic Adolescent Scoliosis: Evaluation Using Finite Element Model and Surgical Specimen,” JBMR Plus 7 (2023): e10812, https://doi.org/10.1002/jbm4.10812.

[81]

L. Peng, L. Lan, P. Xiu, et al., “Prediction of Proximal Junctional Kyphosis After Posterior Scoliosis Surgery With Machine Learning in the Lenke 5 Adolescent Idiopathic Scoliosis Patient,” Frontiers in Bioengineering and Biotechnology 8 (2020): 559387, https://doi.org/10.3389/fbioe.2020.559387.

[82]

N. Sabri, H. N. A. Hamed, Z. Ibrahim, et al., “Integrated Evolving Spiking Neural Network and Feature Extraction Methods for Scoliosis Classification,” CMC-Computers Materials & Continua 73 (2022): 5559-5573, https://doi.org/10.32604/cmc.2022.029221.

[83]

B. L. Zhang, K. H. Chen, H. D. Yuan, et al., “Automatic Lenke Classification of Adolescent Idiopathic Scoliosis With Deep Learning,” JOR Spine 7 (2024): e1327, https://doi.org/10.1002/jsp2.1327.

[84]

G. X. Qiu, “PUMC Classification and Fusion Level Selection for Adolescent Idiopathic Scoliosis,” Chinese Journal of Surgery 45 (2007): 505-509, https://doi.org/10.3760/j.issn:0529-5815.2007.08.001.

[85]

J. Zhang, H. Li, and Y. Zhang, “Application of Computer-Aided Approaches to the PUMC Classification of Scoliosis,” Biomedical Engineering Letters 7 (2017): 245-251, https://doi.org/10.1007/s13534-017-0022-7.

[86]

Q. Y. Li, G. X. Qiu, and J. G. Zhang, “Comparative Study of Effect of Reliability Between Lenke and PUMC Classification Systems for Adolescent Idiopathic Scoliosis Upon Surgical Fusion Range,” Chinese Journal of Orthopaedics 29 (2009): 305-309, https://doi.org/10.3760/cma.j.issn.0253-2352.2009.04.004.

[87]

G. X. Qiu, B. Yu, V. Norbert, et al., “Application and Analysis of King, Lenke and PUMC Classifications of Idiopathic Scoliosis,” Chinese Journal of Orthopaedics 26 (2006): 145-150, https://doi.org/10.3760/j.issn:0253-2352.2006.03.001.

[88]

G. Liu, S. Liu, X. Li, et al., “Genetic Polymorphisms of PAX1 Are Functionally Associated With Different PUMC Types of Adolescent Idiopathic Scoliosis in a Northern Chinese Han Population,” Gene 688 (2019): 215-220, https://doi.org/10.1016/j.gene.2018.12.013.

[89]

G. Liu, S. Liu, M. Lin, et al., “Genetic Polymorphisms of GPR126 Are Functionally Associated With PUMC Classifications of Adolescent Idiopathic Scoliosis in a Northern Han Population,” Journal of Cellular and Molecular Medicine 22 (2018): 1964-1971, https://doi.org/10.1111/jcmm.13486.

[90]

Q. Zhuang, G. Qiu, Q. Li, et al., “Modified PUMC Classification for Adolescent Idiopathic Scoliosis,” Spine Journal 19 (2019): 1518-1528, https://doi.org/10.1016/j.spinee.2019.03.008.

[91]

X. Wang, Z. Wu, W. Sun, et al., “Finite Element Analysis of Adolescent Idiopathic Scoliosis of PUMC II d_2 Surgical Treatment With Different Fusion Levels,” National Medical Journal of China 90 (2010): 1039-1043, https://doi.org/10.3760/cma.j.issn.0376-2491.2010.15.009.

[92]

X. S. Wang, Z. H. Wu, Z. J. Xing, et al., “Choice Fusion Therapy of PUMC II d_2 Adolescent Idiopathic Scoliosis: A Finite Element Analysis of Optimal Fusion Segment,” Journal of Clinical Rehabilitative Tissue Engineering Research 13 (2009): 10382-10386, https://doi.org/10.3969/j.issn.1673-8225.2009.52.039.

[93]

J. Bettany-Saltikov, D. Turnbull, S. Y. Ng, and R. Webb, “Management of Spinal Deformities and Evidence of Treatment Effectiveness,” Open Orthopaedics Journal 11 (2017): 1521-1547, https://doi.org/10.2174/1874325001711011521.

[94]

R. Marchese, E. Ilhan, and V. Pacey, “How Schroth Therapists Vary the Implementation of Schroth Worldwide for Adolescents With Idiopathic Scoliosis: A Mixed Methods Study,” Journal of Clinical Medicine 12 (2023): 6063, https://doi.org/10.3390/jcm12186063.

[95]

V. Dimitrijevic, D. Viduka, T. Scepanovic, et al., “Effects of Schroth Method and Core Stabilization Exercises on Idiopathic Scoliosis: A Systematic Review and Meta-Analysis,” European Spine Journal 31 (2022): 3500-3511, https://doi.org/10.1007/s00586-022-07407-4.

[96]

K. Skaggs, A. J. Lin, L. M. Andras, K. D. Illingworth, and D. L. Skaggs, “Standing in Schroth Trained Position Significantly Changes Cobb Angle and Leg Length Discrepancy: A Pilot Study,” Spine Deformity 8 (2020): 1185-1192, https://doi.org/10.1007/s43390-020-00157-7.

[97]

N. Mohamed, V. Acharya, S. Schreiber, E. C. Parent, and L. Westover, “Effect of Adding Schroth Physiotherapeutic Scoliosis Specific Exercises to Standard Care in Adolescents With Idiopathic Scoliosis on Posture Assessed Using Surface Topography: A Secondary Analysis of a Randomized Controlled Trial (RCT),” PLoS One 19 (2024): e0302577, https://doi.org/10.1371/journal.pone.0302577.

[98]

L. Ceballos-Laita, A. Carrasco-Uribarren, S. Cabanillas-Barea, S. Pérez-Guillén, P. Pardos-Aguilella, and S. Jiménez del Barrio, “The Effectiveness of Schroth Method in Cobb Angle, Quality of Life, and Trunk Rotation Angle in Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis,” European Journal of Physical and Rehabilitation Medicine 59 (2023): 228-236, https://doi.org/10.23736/s1973-9087.23.07654-2.

[99]

O. Buyukturan, M. H. Kaya, H. Alkan, et al., “Comparison of the Efficacy of Schroth and Lyon Exercise Treatment Techniques in Adolescent Idiopathic Scoliosis: A Randomized Controlled, Assessor and Statistician Blinded Study,” Musculoskeletal Science & Practice 72 (2024): 102952, https://doi.org/10.1016/j.msksp.2024.102952.

[100]

D. Aktan and Y. Erdoganoglu, “Effect of Short-Term 3-Dimensional Schroth Exercises in Adolescent Idiopathic Scoliosis: An Observational Study,” Journal of Manipulative and Physiological Therapeutics 44 (2021): 612-620, https://doi.org/10.1016/j.jmpt.2022.02.001.

[101]

K. Tombak, I. Yuksel, U. Ozsoy, et al., “A Comparison of the Effects of Supervised Versus Home Schroth Exercise Programs With Adolescent Idiopathic Scoliosis,” Children (Basel) 11 (2024): 354, https://doi.org/10.3390/children11030354.

[102]

A. Gao, J.-Y. Li, R. Shao, et al., “Schroth Exercises Improve Health-Related Quality of Life and Radiographic Parameters in Adolescent Idiopathic Scoliosis Patients,” Chinese Medical Journal 134 (2021): 2589-2596, https://doi.org/10.1097/cm9.0000000000001799.

[103]

H. J. Lee and L. Suk-Min, “Effects of Schroth Exercise Therapy on Curvature and Body Appearance of Patients With Lumbar Idiopathic Scoliosis,” Physical Therapy Rehabilitation Science 9 (2020): 230-237, https://doi.org/10.14474/ptrs.2020.9.4.230.

[104]

V. Dimitrijevic, T. Scepanovic, N. Jevtic, et al., “Application of the Schroth Method in the Treatment of Idiopathic Scoliosis: A Systematic Review and Meta-Analysis,” International Journal of Environmental Research and Public Health 19 (2022): 16730, https://doi.org/10.3390/ijerph192416730.

[105]

J. Park and W.-Y. So, “The Effect of the Schroth Rehabilitation Exercise Program on Spinal and Feet Alignment in Adolescent Patients With Idiopathic Scoliosis: A Pilot Study,” Healthcare (Basel) 10 (2022): 398, https://doi.org/10.3390/healthcare10020398.

[106]

T. K. Colak, B. Akcay, A. Apti, et al., “The Effectiveness of the Schroth Best Practice Program and Cheneau-Type Brace Treatment in Adolescent Idiopathic Scoliosis: Long-Term Follow-Up Evaluation Results,” Children (Basel) 10 (2023): 386, https://doi.org/10.3390/children10020386.

[107]

R. A. Mohamed and A. M. Yousef, “Impact of Schroth Three-Dimensional vs. Proprioceptive Neuromuscular Facilitation Techniques in Adolescent Idiopathic Scoliosis: A Randomized Controlled Study,” European Review for Medical and Pharmacological Sciences 25 (2021): 7717-7725, https://doi.org/10.26355/eurrev_202112_27618.

[108]

K. W. Moon, H. Seo, and S. Y. Gon, “Effects of Schroth Method Exercise Program on Spinal Curvature and Scoliosis Angle in Adult Women Patients With Scoliosis,” Korean Journal of Growth and Development 29 (2021): 219-225, https://doi.org/10.34284/kjgd.2021.05.29.2.219.

[109]

K. A. Zapata, R. J. Dieckmann, M. T. Hresko, et al., “A United States Multi-Site Randomized Control Trial of Schroth-Based Therapy in Adolescents With Mild Idiopathic Scoliosis,” Spine Deformity 11 (2023): 861-869, https://doi.org/10.1007/s43390-023-00665-2.

[110]

N. L. Radwan, M. M. Ibrahim, and W. S. Mahmoud, “Comparison of Two Periods of Schroth Exercises for Improving Postural Stability Indices and Cobb Angle in Adolescent Idiopathic Scoliosis,” Journal of Back and Musculoskeletal Rehabilitation 35 (2022): 573-582, https://doi.org/10.3233/bmr-200342.

[111]

M. Gim and H. An, “Effects of Schroth Exercises Combined With Taping on the Cobb Angle and Dynamic Balance Ability in Patients With Scoliosis,” Journal of International Academy of Physical Threrapy Research 13 (2022): 2531-2536.

[112]

X. Shen, Z. Yang, P. Zhang, Y. Xu, and J. Wang, “Effects of Balance Training Combined With Schroth Therapy on Adolescents With Mild Idiopathic Scoliosis: A Six-Week Randomized Controlled Trial,” Journal of Back and Musculoskeletal Rehabilitation 36 (2023): 1365-1373, https://doi.org/10.3233/bmr-220383.

[113]

N. Karavidas, P. Iakovidis, I. Chatziprodromidou, et al., “Physiotherapeutic Scoliosis-Specific Exercises (PSSE-Schroth) can Reduce the Risk for Progression During Early Growth in Curves Below 25°: Prospective Control Study,” European Journal of Physical and Rehabilitation Medicine 60 (2024): 331-339, https://doi.org/10.23736/s1973-9087.24.08177-2.

[114]

S. O. Gorgu and Z. C. Algun, “A Randomized Controlled Study of the Effect of Functional Exercises on Postural Kyphosis: Schroth-Based Three-Dimensional Exercises Versus Postural Corrective Exercises,” Disability and Rehabilitation 45 (2023): 1992-2002, https://doi.org/10.1080/09638288.2022.2083244.

[115]

L. Min-ji, L. J. Bum, and K. Hyun-woo, “A Single Case Study on Kinematic Correction of the Idiopathic Scoliosis Using Sling and Schroth,” Kinesiology 5 (2020): 74-83.

[116]

P. Zhang, X. Shen, L. Zhang, S. Wang, and Q. Wu, “Effect of Sling Exercise Combined With Schroth Therapy on Adolescents With Mild Idiopathic Scoliosis: A Twelve-Week Randomized Controlled Trial,” Journal of Back and Musculoskeletal Rehabilitation 37 (2024): 379-388, https://doi.org/10.3233/bmr-230102.

[117]

C. J. Hyun, “Effects of Schroth Exercise With Kinesiotaping on Spine Alignment and Balance Ability in Idiopathic Scoliosis Affecting Young Adults,” Journal of International Academy of Physical Threrapy Research 12 (2021): 2432-2438, https://doi.org/10.20540/JIAPTR2021.12.3.2432.

[118]

S. Rrecaj-Malaj, S. Beqaj, V. Krasniqi, M. Qorolli, and A. Tufekcievski, “Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest Expansion, Flexibility, and Quality of Life in Adolescents With Idiopathic Scoliosis,” Medical Science Monitor Basic Research 26 (2020): e920449, https://doi.org/10.12659/msmbr.920449.

[119]

K. Y. Song, K. H. Baek, M. S. Lim, and H. W. Lim, “Effects of the Instrument Pilates Exercise Based on the Schroth Exercise on Cobb's Angle, Angle of Trunk Rotation, and Low Back Pain in Patients With Idiopathic Scoliosis: A Single Subject Study,” Journal of Korean Physical Therapy 33 (2021): 97-105, https://doi.org/10.18857/jkpt.2021.33.2.97.

[120]

A. Khaledi, H. Minoonejad, H. Daneshmandi, M. Akoochakian, and M. Gheitasi, “Outcomes of 12 Weeks of Schroth and Asymmetric Spinal Stabilization Exercises on Cobb Angle, Angle of Trunk Rotation, and Quality of Life in Adolescent Boys With Idiopathic Scoliosis: A Randomized-Controlled Trial,” Archives of Bone and Joint Surgery 12 (2024): 26-35, https://doi.org/10.22038/abjs.2023.71875.3356.

[121]

S. Schreiber, D. Whibley, and E. C. Somers, “Schroth Physiotherapeutic Scoliosis-Specific Exercise (PSSE) Trials: Systematic Review of Methods and Recommendations for Future Research,” Children (Basel) 10 (2023): 954, https://doi.org/10.3390/children10060954.

[122]

Y. Larni, H. Mohsenifar, H. Ghandhari, and R. Salehi, “The Effectiveness of Schroth Exercises Added to the Brace on the Postural Control of Adolescents With Idiopathic Scoliosis: Case Series,” Annals of Medicine and Surgery (London) 84 (2022): 104893, https://doi.org/10.1016/j.amsu.2022.104893.

[123]

M.-Q. Fang, X.-L. Huang, W. Wang, et al., “The Efficacy of Schroth Exercises Combined With the Cheneau Brace for the Treatment of Adolescent Idiopathic Scoliosis: A Retrospective Controlled Study,” Disability and Rehabilitation 44 (2022): 5060-5068, https://doi.org/10.1080/09638288.2021.1922521.

[124]

B. Akcay and G. Inanc, “The Effect of Schroth Best Practice Exercises and Cheneau Brace Treatment on Perceptual and Cognitive Asymmetry in Adolescent Idiopathic Scoliosis With Thoracic Major Curve,” Irish Journal of Medical Science 193 (2023): 1479-1486, https://doi.org/10.1007/s11845-023-03593-2.

[125]

J. Chen, T. Xu, J. Zhou, et al., “The Superiority of Schroth Exercise Combined Brace Treatment for Mild-To-Moderate Adolescent Idiopathic Scoliosis: A Systematic Review and Network Meta-Analysis,” World Neurosurgery 186 (2024): 184-196, https://doi.org/10.1016/j.wneu.2024.03.103.

[126]

H.-R. Weiss, “"Brace Technology" Thematic Series - The Gensingen Brace in the Treatment of Scoliosis,” Scoliosis 5 (2010): 22, https://doi.org/10.1186/1748-7161-5-22.

[127]

S. Goral and U. Kose, “Development of a CapsNet and Fuzzy Logic Decision Support System for Diagnosing Scoliosis and Planning Treatments via Schroth Method,” IEEE Access 10 (2022): 129055-129078, https://doi.org/10.1109/access.2022.3227763.

[128]

H.-R. Weiss and A. Kleban, “Development of CAD/CAM Based Brace Models for the Treatment of Patients With Scoliosis: Classification-Based Approach Versus Finite Element Modelling,” Asian Spine Journal 9 (2015): 661-667, https://doi.org/10.4184/asj.2015.9.5.661.

[129]

S. Schreiber, E. C. Parent, G. N. Kawchuk, and D. M. Hedden, “Algorithm for Schroth-Curve-Type Classification of Adolescent Idiopathic Scoliosis: An Intra- and Inter-Rater Reliability Study,” Children (Basel) 10 (2023): 523, https://doi.org/10.3390/children10030523.

[130]

M. Borysov, X. Nan, H.-R. Weiss, D. Turnbull, and A. Kleban, “Reliability of the Original Lehnert-Schroth (LS) Scoliosis Classification in Physiotherapy Practice,” Journal of Physical Therapy Science 32 (2020): 647-652, https://doi.org/10.1589/jpts.32.647.

[131]

B. Akcay, T. K. Colak, A. Apti, et al., “The Reliability of the Augmented Lehnert-Schroth and Rigo Classification in Scoliosis Management,” South African Journal of Physiotherapy 77 (2021): 1568, https://doi.org/10.4102/sajp.v77i2.1568.

[132]

M. D. Rigo, M. Villagrasa, and D. Gallo, “A Specific Scoliosis Classification Correlating With Brace Treatment: Description and Reliability,” Scoliosis 5 (2010): 1, https://doi.org/10.1186/1748-7161-5-1.

[133]

X. Zhang, B. Liao, and L. Zeng, “Rigo Classification of Adolescent Idiopathic Scoliosis: Description and Reliability,” Chinese Journal of Rehabilitation Medicine 35 (2020): 694-699, https://doi.org/10.3969/j.issn.1001-1242.2020.06.009.

[134]

B. Chongov, V. Alexiev, H. Georgiev, et al., “Correlation Between Scoliosis Deformity Type and Trunk Symmetry Before and After Schroth Physiotherapeutic Exercises,” Comptes Rendus de l'Académie Bulgare des Sciences 70 (2017): 1467-1474.

[135]

M. W. Fields, C. C. Rymond, M. S. Malka, et al., “Improvement in Axial Rotation With Bracing Reduces the Risk of Curve Progression in Patients With Adolescent Idiopathic Scoliosis,” Spine Deformity 12 (2024): 1345-1353, https://doi.org/10.1007/s43390-024-00888-x.

[136]

M. K. Minsk, K. D. Venuti, G. L. Daumit, and P. D. Sponseller, “Effectiveness of the Rigo Cheneau Versus Boston-Style Orthoses for Adolescent Idiopathic Scoliosis: A Retrospective Study,” Scoliosis and Spinal Disorders 12 (2017): 7, https://doi.org/10.1186/s13013-017-0117-z.

[137]

D. Ovadia, S. Eylon, A. Mashiah, S. Wientroub, and E. D. Lebel, “Factors Associated With the Success of the Rigo System Cheneau Brace in Treating Mild to Moderate Adolescent Idiopathic Scoliosis,” Journal of Children's Orthopaedics 6 (2012): 327-331, https://doi.org/10.1007/s11832-012-0429-8.

[138]

M. Rigo and H.-R. Weiss, “The Cheneau Concept of Bracing—Biomechanical Aspects,” Studies in Health Technology and Informatics 135 (2008): 303-319.

[139]

L. Rivett, A. Rothberg, A. Stewart, and R. Berkowitz, “Application of Different Measures of Skeletal Maturity in Initiating Weaning From a Brace for Scoliosis: Two Case Reports,” Journal of Medical Case Reports 3 (2009): 6444, https://doi.org/10.1186/1752-1947-3-6444.

[140]

H. R. Weiss, R. Dallmayer, and D. Gallo, “Sagittal Counter Forces (SCF) in the Treatment of Idiopathic Scoliosis: A Preliminary Report,” Pediatric Rehabilitation 9 (2006): 24-30, https://doi.org/10.1080/13638490500038126.

[141]

G. Wood, “Brace Modifications That Can Result in Improved Curve Correction in Idiopathic Scoliosis,” Scoliosis 9 (2014): 2, https://doi.org/10.1186/1748-7161-9-2.

[142]

X. Zhang, X. Han, and B. Liao, “Evaluation of the Effect of Brace Intervention on Paravertebral Soft Tissue Morphology in Adolescent Idiopathic Scoliosis Patients With Rigo E by Musculoskeletal Ultrasound,” Journal of Ultrasound in Medicine 24 (2022): 629-634, https://doi.org/10.3969/j.issn.1008-6978.2022.08.018.

[143]

H. Labelle, C.-E. Aubin, R. Jackson, L. Lenke, P. Newton, and S. Parent, “Seeing the Spine in 3D: How Will It Change What We Do?,” Journal of Pediatric Orthopedics 31 (2011): S37-S45, https://doi.org/10.1097/BPO.0b013e3181fd8801.

[144]

S. Donzelli, S. Poma, L. Balzarini, et al., “State of the Art of Current 3-D Scoliosis Classifications: A Systematic Review From a Clinical Perspective,” Journal of Neuroengineering and Rehabilitation 12 (2015): 91, https://doi.org/10.1186/s12984-015-0083-8.

[145]

A. Demirel, P. H. Pedersen, and S. P. Eiskjar, “Cumulative Radiation Exposure During Current Scoliosis Management,” Danish Medical Journal 6 (2020): A06190366.

[146]

L. D. Rose, R. Williams, B. Ajayi, et al., “Reducing Radiation Exposure and Cancer Risk for Children With Scoliosis: EOS the New Gold Standard,” Spine Deformity 11 (2023): 847-851, https://doi.org/10.1007/s43390-023-00653-6.

[147]

M. Wybier and P. Bossard, “Musculoskeletal Imaging in Progress: The EOS Imaging System,” Joint, Bone, Spine 80 (2013): 238-243, https://doi.org/10.1016/j.jbspin.2012.09.018.

[148]

K. Monuszko, M. Malinzak, L. Yang, et al., “Image Quality of EOS Low-Dose Radiography in Comparison With Conventional Radiography for Assessment of Ventriculoperitoneal Shunt Integrity,” Journal of Neurosurgery. Pediatrics 27 (2021): 375-381, https://doi.org/10.3171/2020.8.Peds20428.

[149]

T. Arginteanu, D. DeTurck, and S. Pasha, “Global 3D Parameter of the Spine: Application of Calugareanu-White-Fuller Theorem in Classification of Pediatric Spinal Deformity,” Medical & Biological Engineering & Computing 58 (2020): 2963-2969, https://doi.org/10.1007/s11517-020-02259-w.

[150]

A. P. Sangole, C. E. Aubin, H. Labelle, et al., “Three-Dimensional Classification of Thoracic Scoliotic Curves,” Spine 34 (2009): 91-99, https://doi.org/10.1097/BRS.0b013e3181877bbb.

[151]

L. Duong, F. Cheriet, and H. Labelle, “Three-Dimensional Classification of Spinal Deformities Using Fuzzy Clustering,” Spine 31 (2006): 923-930, https://doi.org/10.1097/01.brs.0000209312.62384.c1.

[152]

J. C. Bernard, E. Berthonnaud, J. Deceuninck, L. Journoud-Rozand, G. Notin, and E. Chaleat-Valayer, “Three-Dimensional Reconstructions of Lenke 1A Curves,” Scoliosis and Spinal Disorders 13 (2018): 5, https://doi.org/10.1186/s13013-017-0149-4.

[153]

S. Pasha, V. Ho-Fung, M. Eker, S. Nossov, and M. Francavilla, “Three-Dimensional Classification of the Lenke 1 Adolescent Idiopathic Scoliosis Using Coronal and Lateral Spinal Radiographs,” BMC Musculoskeletal Disorders 21 (2020): 824, https://doi.org/10.1186/s12891-020-03798-x.

[154]

S. Kadoury and H. Labelle, “Classification of Three-Dimensional Thoracic Deformities in Adolescent Idiopathic Scoliosis From a Multivariate Analysis,” European Spine Journal 21 (2012): 40-49, https://doi.org/10.1007/s00586-011-2004-2.

[155]

J. Shen, S. Parent, J. Wu, et al., “Towards a New 3D Classification for Adolescent Idiopathic Scoliosis,” Spine Deformity 8 (2020): 387-396, https://doi.org/10.1007/s43390-020-00051-2.

[156]

E. Garcia-Cano, F. Arambula Cosio, L. Duong, et al., “Dynamic Ensemble Selection of Learner-Descriptor Classifiers to Assess Curve Types in Adolescent Idiopathic Scoliosis,” Medical & Biological Engineering & Computing 56 (2018): 2221-2231, https://doi.org/10.1007/s11517-018-1853-9.

[157]

W. Thong, S. Parent, J. Wu, C. E. Aubin, H. Labelle, and S. Kadoury, “Three-Dimensional Morphology Study of Surgical Adolescent Idiopathic Scoliosis Patient From Encoded Geometric Models,” European Spine Journal 25 (2016): 3104-3113, https://doi.org/10.1007/s00586-016-4426-3.

[158]

S. Pasha and J. Flynn, “Data-Driven Classification of the 3D Spinal Curve in Adolescent Idiopathic Scoliosis With Applications in Surgical Outcome Prediction,” Scientific Reports 8 (2018): 16296, https://doi.org/10.1038/s41598-018-34261-6.

[159]

S. Pasha, S. Shah, B. Yaszay, P. Newton, and Harms Study Group, “Discovering the Association Between the Pre- and Post-Operative 3D Spinal Curve Patterns in Adolescent Idiopathic Scoliosis,” Spine Deformity 9 (2021): 1053-1062, https://doi.org/10.1007/s43390-020-00276-1.

[160]

S. Pasha, P. Hassanzadeh, M. Ecker, and V. Ho, “A Hierarchical Classification of Adolescent Idiopathic Scoliosis: Identifying the Distinguishing Features in 3D Spinal Deformities,” PLoS One 14 (2019): 0213406, https://doi.org/10.1371/journal.pone.0213406.

[161]

S. Pasha, J. Shen, and S. Kadoury, “True 3D Parameters of the Spinal Deformity in Adolescent Idiopathic Scoliosis,” Spine Deformity 9 (2021): 703-710, https://doi.org/10.1007/s43390-020-00254-7.

[162]

S. Pasha and K. Baldwin, “Surgical Outcome Differences Between the 3D Subtypes of Right Thoracic Adolescent Idiopathic Scoliosis,” European Spine Journal 28 (2019): 3076-3084, https://doi.org/10.1007/s00586-019-06145-4.

[163]

T. S. Lu, C. S. Luo, S. D. Yao, et al., “Validation of Artificial Intelligence in the Classification of Adolescent Idiopathic Scoliosis and the Comparison to Clinical Manual Handling,” Orthopaedic Surgery 16 (2024): 2040-2051, https://doi.org/10.1111/os.14144.

[164]

M. L. Nault, J. M. Mac-Thiong, M. Roy-Beaudry, et al., “Three-Dimensional Spinal Morphology Can Differentiate Between Progressive and Nonprogressive Patients Withadolescent Idiopathic Scoliosis at the Initial Presentation: A Prospective Study,” Spine (Phila PA 1976) 39 (2014): E601-E606, https://doi.org/10.1097/BRS.0000000000000284.

RIGHTS & PERMISSIONS

2025 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/