Evaluating the Status and Promising Potential of Robotic Spinal Surgery Systems

Xiang Li, , Jiasheng Chen, , Ben Wang, , Xiao Liu, , Shuai Jiang, , Zhuofu Li, , Weishi Li, , Zihe Li, , Feng Wei,

Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (11) : 2620 -2632.

PDF
Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (11) : 2620 -2632. DOI: 10.1111/os.14244
REVIEW ARTICLE

Evaluating the Status and Promising Potential of Robotic Spinal Surgery Systems

Author information +
History +
PDF

Abstract

The increasing frequency of cervical and lumbar spine disorders, driven by aging and evolving lifestyles, has led to a rise in spinal surgeries using pedicle screws. Robotic spinal surgery systems have emerged as a promising innovation, offering enhanced accuracy in screw placement and improved surgical outcomes. We focused on literature of this field from the past 5 years, and a comprehensive literature search was performed using PubMed and Google Scholar. Robotic spinal surgery systems have significantly impacted spinal procedures by improving pedicle screw placement accuracy and supporting various techniques. These systems facilitate personalized, minimally invasive, and low-radiation interventions, leading to greater precision, reduced patient risk, and decreased radiation exposure. Despite advantages, challenges such as high costs and a steep learning curve remain. Ongoing advancements are expected to further enhance these systems’ role in spinal surgery.

Keywords

medical robotics / navigation / pedicle screw / spine surgery

Cite this article

Download citation ▾
Xiang Li,, Jiasheng Chen,, Ben Wang,, Xiao Liu,, Shuai Jiang,, Zhuofu Li,, Weishi Li,, Zihe Li,, Feng Wei,. Evaluating the Status and Promising Potential of Robotic Spinal Surgery Systems. Orthopaedic Surgery, 2024, 16(11): 2620-2632 DOI:10.1111/os.14244

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Castro WH, Halm H, Jerosch J, Malms J, Steinbeck J, Blasius S. Accuracy of pedicle screw placement in lumbar vertebrae. Spine (Phila Pa 1976). 1996; 21(11): 1320–1324.

[2]

Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976). 2007; 32(2): E56–E64.

[3]

Bydon M, Mathios D, Macki M, de la Garza-Ramos R, Aygun N, Sciubba DM, et al. Accuracy of C2 pedicle screw placement using the anatomic freehand technique. Clin Neurol Neurosurg. 2014; 125: 24–27.

[4]

Du JP, Fan Y, Wu QN, Wang DH, Zhang J, Hao DJ. Accuracy of pedicle screw insertion among 3 image-guided navigation systems: systematic review and meta-analysis. World Neurosurg. 2018; 109: 24–30.

[5]

Kuris EO, Anderson GM, Osorio C, Basques B, Alsoof D, Daniels AH. Development of a robotic spine surgery program. J Bone Joint Surg. 2022; 104(19): e83.

[6]

Devito DP, Woo R. History and evolution of spinal robotics in pediatric spinal deformity. Int J Spine Surg. 2021; 15(s2): S65–S73.

[7]

Alluri RK, Avrumova F, Sivaganesan A, Vaishnav AS, Lebl DR, Qureshi SA. Overview of robotic technology in spine surgery. HSS J. 2021; 17(3): 308–316.

[8]

O’Connor TE, O’Hehir MM, Khan A, Mao JZ, Levy LC, Mullin JP, et al. Mazor X stealth robotic technology: a technical note. World Neurosurg. 2021; 145: 435–442.

[9]

Lefranc M, Peltier J. Evaluation of the ROSA™ spine robot for minimally invasive surgical procedures. Expert Rev Med Devices. 2016; 13(10): 899–906.

[10]

Ahmed AK, Zygourakis CC, Kalb S, Zhu AM, Molina CA, Jiang B, et al. First spine surgery utilizing real-time image-guided robotic assistance. Comput Assist Surg (Abingdon). 2019; 24(1): 13–17.

[11]

Perfetti DC, Kisinde S, Rogers-LaVanne MP, Satin AM, Lieberman IH. Robotic spine surgery: past, present, and future. Spine (Phila Pa 1976). 2022; 47(13): 909–921.

[12]

Kubicek J, Tomanec F, Cerny M, Vilimek D, Kalova M, Oczka D. Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: a comprehensive review. Sensors. 2019; 19(23):5199

[13]

Chakravarthy V, Sheikh S, Schmidt E, Steinmetz M. Imaging technologies in spine surgery. Neurosurg Clin N Am. 2020; 31(1): 93–101.

[14]

Keil H, Trapp O. Fluoroscopic imaging: new advances. Injury. 2022; 53(Suppl 3): S8–S15.

[15]

Ewurum CH, Guo Y, Pagnha S, Feng Z, Luo X. Surgical navigation in orthopedics: workflow and system review. Adv Exp Med Biol. 2018; 1093: 47–63.

[16]

Tonetti J, Boudissa M, Kerschbaumer G, Seurat O. Role of 3D intraoperative imaging in orthopedic and trauma surgery. Orthop Traumatol Surg Res. 2020; 106(1s): S19–S25.

[17]

Fan M, Zhang Q, Fang Y, Tian W. Robotic solution for orthopedic surgery. Chin Med J. 2023; 136(12): 1387–1389.

[18]

Hyun SJ, Kim KJ, Jahng TA, Kim HJ. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine (Phila Pa 1976). 2017; 42(6): 353–358.

[19]

Khan A, Meyers JE, Siasios I, Pollina J. Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve. Oper Neurosurg (Hagerstown). 2019; 17(1): 61–69.

[20]

Lee NJ, Zuckerman SL, Buchanan IA, Boddapati V, Mathew J, Marciano G, et al. Is there a difference in screw accuracy, robot time per screw, robot abandonment, and radiation exposure between the Mazor X and the renaissance? A propensity-matched analysis of 1179 robot-assisted screws. Global Spine J. 2023; 13(5): 1286–1292.

[21]

Xie LZ, Wang QL, Zhang Q, He D, Tian W. Accuracies of various types of spinal robot in robot-assisted pedicle screw insertion: a Bayesian network meta-analysis. J Orthop Surg Res. 2023; 18(1): 243.

[22]

Lieber AM, Kirchner GJ, Kerbel YE, Khalsa AS. Robotic-assisted pedicle screw placement fails to reduce overall postoperative complications in fusion surgery. Spine J. 2019; 19(2): 212–217.

[23]

Liounakos JI, Kumar V, Jamshidi A, Silman Z, Good CR, Schroerlucke SR, et al. Reduction in complication and revision rates for robotic-guided short-segment lumbar fusion surgery: results of a prospective, multi-center study. J Robot Surg. 2021; 15(5): 793–802.

[24]

Li Y, Wang Y, Ma X, Ma J, Dong B, Yang P, et al. Comparison of short-term clinical outcomes between robot-assisted and freehand pedicle screw placement in spine surgery: a meta-analysis and systematic review. J Orthop Surg Res. 2023; 18(1): 359.

[25]

Gao S, Lv Z, Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J. 2018; 27(4): 921–930.

[26]

Matur AV, Palmisciano P, Duah HO, Chilakapati SS, Cheng JS, Adogwa O. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: a systematic review and meta-analysis. Spine J. 2023; 23(2): 197–208.

[27]

Han X, Tian W, Liu Y, Liu B, He D, Sun Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine. 2019; 30: 615–622.

[28]

Kim HJ, Kang KT, Chun HJ, Hwang JS, Chang BS, Lee CK, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot. 2018; 14(4): e1917.

[29]

Wang L, Li C, Wang Z, Li D, Tian Y, Yuan S, et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up. J Robot Surg. 2023; 17(2): 473–485.

[30]

Chen X, Song Q, Wang K, Chen Z, Han Y, Shen H, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: a retrospective matched-control analysis for clinical and quality-of-life outcomes. J Comp Eff Res. 2021; 10(10): 845–856.

[31]

Wang X, Liu H-C, Ma Y-H, Zhu Q-S, Zhu Y-H. Effectiveness and safety of robot-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: a systematic review and meta-analysis. J Robot Surg. 2024; 18(1): 37.

[32]

Akazawa T, Torii Y, Ueno J, Umehara T, Iinuma M, Yoshida A, et al. Learning curves for robotic-assisted spine surgery: an analysis of the time taken for screw insertion, robot setting, registration, and fluoroscopy. Eur J Orthop Surg Traumatol. 2023; 34: 127–134.

[33]

Ueno J, Akazawa T, Torii Y, Umehara T, Iinuma M, Yoshida A, et al. Accuracy and screw insertion time of robotic-assisted cortical bone trajectory screw placement for posterior lumbar Interbody fusion: a comparison of early, middle, and late phases. Cureus. 2022; 14(12): e32574.

[34]

Jiang B, Pennington Z, Azad T, Liu A, Ahmed AK, Zygourakis CC, et al. Robot-assisted versus freehand instrumentation in short-segment lumbar fusion: experience with real-time image-guided spinal robot. World Neurosurg. 2020; 136: e635–e645.

[35]

Marzouk MM, Afghanyar Y, Marzouk MM, Boussouf SH, Hartung P, Richter M. Comparison of radiation exposure and surgery time between an intraoperative CT with automatic surface registration and a preoperative CT with manual surface registration in navigated spinal surgeries. Eur Spine J. 2022; 31(3): 685–692.

[36]

Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER. Dosimetric characterization of a cone-beam O-arm imaging system. J Xray Sci Technol. 2009; 17(4): 305–317.

[37]

Li S, Du J, Huang Y, Hao D, Wang J, Zhao Z, et al. Comparison of surgical efficacy between O-arm combined with CT 3D real-time navigation system and Tinavi robot-assisted treatment of adolescent congenital scoliosis. Am J Transl Res. 2023; 15(5): 3254–3266.

[38]

Buza JA, Good CR, Lehman RA, Pollina J, Chua RV, Buchholz AL, et al. Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X stealth edition (MXSE) system: workflow and technical tips for safe and efficient use. J Robot Surg. 2020; 15(1): 13–23.

[39]

Ezeokoli EU, Pfennig M, John J, Gupta R, Khalil JG, Park DK. Index surgery cost of fluoroscopic freehand versus robotic-assisted pedicle screw placement in lumbar instrumentation: an age, sex, and approach-matched cohort comparison. J Am Acad Orthop Surg Glob Res Rev. 2022; 6(12): e22.00137.

[40]

Menger RP, Savardekar AR, Farokhi F, Sin A. A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine. 2018; 15(3): 216–224.

[41]

Tabarestani TQ, Sykes D, Murphy KR, Wang TY, Shaffrey CI, Goodwin CR, et al. Beyond placement of pedicle screws—new applications for robotics in spine surgery: a multi-surgeon. Single-Institution Experience Front Surg. 2022; 9: 889906.

[42]

Dalton T, Sykes D, Wang TY, Donnelly D, Than KD, Karikari IO, et al. Robotic-assisted trajectory into Kambin’s triangle during percutaneous Transforaminal lumbar Interbody fusion-initial case series investigating safety and efficacy. Oper Neurosurg (Hagerstown). 2021; 21(6): 400–408.

[43]

Bederman SS, Lopez G, Ji T, Hoang BH. Robotic guidance for en bloc sacrectomy: a case report. Spine (Phila Pa 1976). 2014; 39(23): E1398–E1401.

[44]

Roman H, Dennis T, Merlot B. Robotic excision of sacral root schwannoma. J Gynecol Obstet Hum Reprod. 2023; 52(5): 102585.

[45]

Wu H, Fu YW, Gao ZH, Zhong ZH, Shen JN, Yin JQ. Surgical strategy and application of robotic-assisted benign sacral neurogenic tumor resection. Oper Neurosurg (Hagerstown). 2023; 24(3): 232–241.

[46]

Wu C, Lee CY, Huang TJ, Wu MH. Cement-augmented pedicle screw insertion assisted by spinal robotic systems for widespread spinal metastases. J Robot Surg. 2019; 13(4): 595–598.

[47]

Wang B, Cao J, Chang J, Yin G, Cai W, Li Q, et al. Effectiveness of Tirobot-assisted vertebroplasty in treating thoracolumbar osteoporotic compression fracture. J Orthop Surg Res. 2021; 16(1): 65.

[48]

Epstein NE. Lower complication and reoperation rates for laminectomy rather than MI TLIF/other fusions for degenerative lumbar disease/spondylolisthesis: a review. Surg Neurol Int. 2018; 9: 55.

[49]

Li Z, Jiang S, Song X, Liu S, Wang C, Hu L, et al. Collaborative spinal robot system for laminectomy: a preliminary study. Neurosurg Focus. 2022; 52(1): E11.

[50]

Wang J, Miao J, Zhan Y, Duan Y, Wang Y, Hao D, et al. Spine surgical robotics: current status and recent clinical applications. Neurospine. 2023; 20(4): 1256–1271.

[51]

Li Z, Wang C, Song X, Liu S, Zhang Y, Jiang S, et al. Accuracy evaluation of a novel spinal robotic system for autonomous laminectomy in thoracic and lumbar vertebrae: a cadaveric study. J Bone Joint Surg Am. 2023; 105(12): 943–950.

[52]

Sielatycki JA, Mitchell K, Leung E, Lehman RA. State of the art review of new technologies in spine deformity surgery-robotics and navigation. Spine Deform. 2022; 10(1): 5–17.

[53]

McCormick B, Asdourian PL, Johnson DC, Moatz BW, Duvall GT, Soda MT, et al. 100 complex posterior spinal fusion cases performed with robotic instrumentation. J Robot Surg. 2023; 17(6): 2749–2756.

[54]

Laratta JL, Shillingford JN, Lombardi JM, Alrabaa RG, Benkli B, Fischer C, et al. Accuracy of S2 alar-iliac screw placement under robotic guidance. Spine Deform. 2018; 6(2): 130–136.

[55]

Satin AM, Kisinde S, Lieberman IH. Robotic-assisted revision spine surgery. Int J Spine Surg. 2022; 16(S2): S14–s21.

[56]

Yang MS, Yoon DH, Kim KN, Kim H, Yang JW, Yi S, et al. Robot-assisted anterior lumbar interbody fusion in a swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine (Phila Pa 1976). 2011; 36(2): E139–E143.

[57]

Beutler WJ, Peppelman WC Jr, DiMarco LA. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine (Phila Pa 1976). 2013; 38(4): 356–363.

[58]

Yuk FJ, Carr MT, Schupper AJ, Lin J, Tadros R, Wiklund P, et al. Da Vinci meets Globus Excelsius GPS: a totally robotic minimally invasive anterior and posterior lumbar fusion. World Neurosurg. 2023; 180: 29–35.

[59]

Qu B, Cao J, Qian C, Wu J, Lin J, Wang L, et al. Current development and prospects of deep learning in spine image analysis: a literature review. Quant Imaging Med Surg. 2022; 12(6): 3454–3479.

[60]

Scherer M, Kausch L, Bajwa A, Neumann JO, Ishak B, Naser P, et al. J Clin Med. 2023; 12(7): 2646.

[61]

Abel F, Lebl DR, Gorgy G, Dalton D, Chazen JL, Lim E, et al. Deep-learning reconstructed lumbar spine 3D MRI for surgical planning: pedicle screw placement and geometric measurements compared to CT. Eur Spine J. 2024.

[62]

Thies M, Zach JN, Gao C, Taylor R, Navab N, Maier A, et al. A learning-based method for online adjustment of C-arm cone-beam CT source trajectories for artifact avoidance. Int J Comput Assist Radiol Surg. 2020; 15(11): 1787–1796.

[63]

Barba P, Stramiello J, Funk EK, Richter F, Yip MC, Orosco RK. Remote telesurgery in humans: a systematic review. Surg Endosc. 2022; 36(5): 2771–2777.

[64]

Tian W, Fan M, Zeng C, Liu Y, He D, Zhang Q. Telerobotic spinal surgery based on 5G network: the first 12 cases. Neurospine. 2020; 17(1): 114–120.

[65]

Chan A, Coutts B, Parent E, Lou E. Development and evaluation of CT-to-3D ultrasound image registration algorithm in vertebral phantoms for spine surgery. Ann Biomed Eng. 2021; 49(1): 310–321.

[66]

Li J, Wang Z, Guo Z, Chen GJ, Yang M, Pei GX. Precise resection and biological reconstruction under navigation guidance for young patients with juxta-articular bone sarcoma in lower extremity: preliminary report. J Pediatr Orthop. 2014; 34(1): 101–108.

[67]

Chen PC, Chang CC, Chen HT, Lin CY, Ho TY, Chen YJ, et al. The accuracy of 3D printing assistance in the spinal deformity surgery. Biomed Res Int. 2019; 2019: 7196528.

[68]

Li Z, Song X, Ji X, Liu S, Jiang S, Wang C, et al. Application of a novel spinal robot system based on 3D-printing registration template in laminectomy. Orthop Biomech Mater Clin Study. 2022; 19(2): 11–13, 25.

[69]

Zhu S, Zhao Z, Pan Y, Zheng G. Markerless robotic pedicle screw placement based on structured light tracking. Int J Comput Assist Radiol Surg. 2020; 15(8): 1347–1358.

[70]

Chen L, Zhang X, He Y, Wang W, Zhang F, Sun L. A method of 3D-3D multi-stage non-rigid registration of the spine based on binocular structured light. Int J Med Robot. 2021; 17(4): e2283.

[71]

Li S-G, Qiu G-X, Feng B, Cai SY, Sheng L, Zhai JL, et al. Experimental study of three dimensional navigation assisted spinal surgery by multi-segment registration technology based on structured light scanning. Zhonghua Yi Xue Za Zhi. 2011; 91(9): 634–638.

[72]

Liu A, Jin Y, Cottrill E, Khan M, Westbroek E, Ehresman J, et al. Clinical accuracy and initial experience with augmented reality–assisted pedicle screw placement: the first 205 screws. J Neurosurg Spine. 2022; 36(3): 351–357.

[73]

Sakai D, Joyce K, Sugimoto M, Horikita N, Hiyama A, Sato M, et al. Augmented, virtual and mixed reality in spinal surgery: a real-world experience. J Orthop Surg (Hong Kong). 2020; 28(3): 2309499020952698.

[74]

Carl B, Bopp M, Saß B, Voellger B, Nimsky C. Implementation of augmented reality support in spine surgery. Eur Spine J. 2019; 28(7): 1697–1711.

[75]

Medtronic. 2024 Available from: https://www.medtronic.com/us-en/healthcare-professionals/products.html

[76]

Zimmer Biomet. 2024 Available from: https://www.zimmerbiomet.eu/en/products/rosa-one-r-brain

[77]

Globus Medical. 2023 Available from: https://www.globusmedical.com/musculoskeletal-solutions/excelsiustechnology/excelsiusgps/

[78]

Tinavi. 2023 Available from: http://cn.tinavi.com/index.php?c=article&a=type&tid=1

RIGHTS & PERMISSIONS

2024 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/