Progress in Computer-Assisted Navigation for Total Knee Arthroplasty in Treating Knee Osteoarthritis with Extra-Articular Deformity

Chen Meng, , Chuan Li, , Yongqing Xu,

Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (11) : 2608 -2619.

PDF
Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (11) : 2608 -2619. DOI: 10.1111/os.14216
REVIEW ARTICLE

Progress in Computer-Assisted Navigation for Total Knee Arthroplasty in Treating Knee Osteoarthritis with Extra-Articular Deformity

Author information +
History +
PDF

Abstract

Total knee arthroplasty (TKA) is a well-established treatment for end-stage knee osteoarthritis. However, in patients with concomitant extra-articular deformities, conventional TKA techniques may lead to unsatisfactory outcomes and higher complication rates. This review summarizes the application of navigated TKA for treating knee osteoarthritis with extra-articular deformities. The principles and potential benefits of computer navigation systems, including improved component alignment, soft tissue balancing, and restoration of mechanical axis, are discussed. Research studies demonstrate that navigated TKA can effectively correct deformities, relieve pain, and improve postoperative joint function and quality of life compared with conventional methods. The advantages of navigated TKA in terms of surgical precision, lower complication rates, and superior functional recovery are highlighted. Despite challenges like the learning curve and costs, navigated TKA is an increasingly indispensable tool for achieving satisfactory outcomes in TKA for knee osteoarthritis patients with extra-articular deformities.

Keywords

Computer-Assisted Navigation / Extra-Articular Deformities / Functional Improvement / Knee Osteoarthritis / Surgical Accuracy / Total Knee Arthroplasty (TKA)

Cite this article

Download citation ▾
Chen Meng,, Chuan Li,, Yongqing Xu,. Progress in Computer-Assisted Navigation for Total Knee Arthroplasty in Treating Knee Osteoarthritis with Extra-Articular Deformity. Orthopaedic Surgery, 2024, 16(11): 2608-2619 DOI:10.1111/os.14216

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: part I. Caspian J Intern Med. 2011; 2(2): 205–212.

[2]

Mader K, Koolen M, Flipsen M, van der Zwan A, Pennig D, Ham J. Complex forearm deformities: operative strategy in posttraumatic pathology. Obere Extrem. 2015; 10(4): 229–239.

[3]

Wallace SJ, Greenstein MD, Fragomen AT, Reif TJ, Rozbruch SR. Staged extra-articular deformity correction in the setting of Total knee arthroplasty. Arthroplast Today. 2023; 24: 101247.

[4]

Manzotti A, Pullen C, Cerveri P, Chemello C, Confalonieri N. Post traumatic knee arthritis: navigated total knee replacement without hardware removal. Knee. 2014; 21(1): 290–294.

[5]

Kunze KN, Bovonratwet P, Polce EM, Paul K, Sculco PK. Comparison of surgical time, short-term adverse events, and implant placement accuracy between manual, robotic-assisted, and computer-navigated Total hip arthroplasty: a network meta-analysis of randomized controlled trials. J Am Acad Orthop Surg Glob Res Rev. 2022; 6(4): e21.00200.

[6]

Grobe A, Weber C, Schmelzle R, Heiland M, Klatt J, Pohlenz P. The use of navigation (BrainLAB vector vision(2)) and intraoperative 3D imaging system (Siemens Arcadis Orbic 3D) in the treatment of gunshot wounds of the maxillofacial region. Oral Maxillofac Surg. 2009; 13(3): 153–158.

[7]

Nisar S, Palan J, Rivière C, Emerton M, Pandit H. Kinematic alignment in total knee arthroplasty. EFORT Open Rev. 2020; 5(7): 380–390.

[8]

Mavrogenis AF, Savvidou OD, Mimidis G, Papanastasiou J, Koulalis D, Demertzis N, et al. Computer-assisted navigation in orthopedic surgery. Orthopedics. 2013; 36(8): 631–642.

[9]

Fehring TK, Mason JB, Moskal J, Pollock DC, Mann J, Williams VJ. When computer-assisted knee replacement is the best alternative. Clin Orthop Relat Res. 2006; 452: 132–136.

[10]

Ikuta K, Matsumoto T, Nakano N, Mukohara S, Hayashi S, Kuroda R. Total knee arthroplasty for severe valgus deformity of the knee with extra-articular deformities of the femur and tibia using a 3-dimensional image matching software system. Int J Surg Case Rep. 2023; 103: 107853.

[11]

Weber P, Gollwitzer H. Kinematic alignment in total knee arthroplasty. Oper Orthop Traumatol. 2021; 33(6): 525–537.

[12]

Fetto JF, Hadley S, Leffers KJ, Leslie CJ, Schwarzkopf R. Electronic measurement of soft-tissue balancing reduces lateral releases in total knee arthroplasty. Bull NYU Hosp Jt Dis. 2011; 69(4): 285–288.

[13]

Shatrov J, Parker D. Computer and robotic -assisted total knee arthroplasty: a review of outcomes. J Exp Orthop. 2020; 7(1): 70.

[14]

Hill D, Williamson T, Lai CY, Leary M, Brandt M. Robots and tools for remodeling bone. IEEE Rev Biomed Eng. 2020; 13: 184–198.

[15]

Beaumont E, Smith R, Jones T, Brown A, Johnson M, Davis K. Clinical validation of computer-assisted navigation in total hip arthroplasty. Adv Orthop. 2011; 2011: 171783.

[16]

Shah SM. After 25 years of computer-navigated total knee arthroplasty, where do we stand today? Art Ther. 2021; 3(1): 41.

[17]

Kim YH, Park JW, Kim JS. The clinical outcome of computer-navigated compared with conventional knee arthroplasty in the same patients: a prospective, randomized, double-blind, long-term study. J Bone Joint Surg Am. 2017; 99(12): 989–996.

[18]

Cozzi Lepri A, Innocenti M, Matassi F, Villano M, Civinini R, Innocenti M. Accelerometer-based navigation in Total knee arthroplasty for the Management of Extra-Articular Deformity and Retained Femoral Hardware: analysis of component alignment. Joints. 2019; 7(1): 1–7.

[19]

Pietsch M, Hochegger M, Djahani O, Mlaker G, Eder-Halbedl M, Hofstädter T. Handheld computer-navigated constrained total knee arthroplasty for complex extra-articular deformities. Arch Orthop Trauma Surg. 2021; 141(12): 2245–2254.

[20]

Matassi F, Cozzi Lepri A, Innocenti M, Zanna L, Civinini R, Innocenti M. Total knee arthroplasty in patients with extra-articular deformity: restoration of mechanical alignment using accelerometer-based navigation system. J Arthroplasty. 2019; 34(4): 676–681.

[21]

Nam D, Weeks KD, Reinhardt KR, Nawabi DH, Cross MB, Mayman DJ. Accelerometer-based, portable navigation vs imageless, large-console computer-assisted navigation in total knee arthroplasty: a comparison of radiographic results. J Arthroplasty. 2013; 28(2): 255–261.

[22]

Gharaibeh MA, Solayar GN, Harris IA, Chen DB, MacDessi SJ. Accelerometer-based, portable navigation (KneeAlign) vs conventional instrumentation for Total knee arthroplasty: a prospective randomized comparative trial. J Arthroplasty. 2017; 32(3): 777–782.

[23]

Kamenaga T, Hayashi S, Hashimoto S, Matsumoto T, Takayama K, Fujishiro T, et al. Accuracy of cup orientation and learning curve of the accelerometer-based portable navigation system for total hip arthroplasty in the supine position. J Orthop Surg (Hong Kong). 2019; 27(2): 2309499019848871.

[24]

Lakhotia D, Agrawal U, Singh SP. A prospective randomized study on whether computer navigation is better than conventional Total knee replacement in terms of short-term functional and clinical outcomes. Cureus. 2024; 16(1): e53226.

[25]

Hou W, Xiao F, Peng P, He M, Wei Q. Osteotomy for treating knee osteoarthritis from 2012 to 2023: bibliometric analysis and global trends. Medicine (Baltimore). 2024; 103(7): e37036.

[26]

Hsu RW, Hsu WH, Shen WJ, Hsu WB, Chang SH. Comparison of computer-assisted navigation and conventional instrumentation for bilateral total knee arthroplasty: the outcomes at mid-term follow-up. Medicine (Baltimore). 2019; 98(47): e18083.

[27]

Siddiqi A, Horan T, Molloy RM, Bloomfield MR, Patel PD, Piuzzi NS. A clinical review of robotic navigation in total knee arthroplasty: historical systems to modern design. EFORT Open Rev. 2021; 6(4): 252–269.

[28]

Hariri M, Hagemann M, Mick P, Deisenhofer J, Panzram B, Innmann M, et al. Physical activity of young patients following minimally invasive lateral Unicompartmental knee replacement. J Clin Med. 2023; 12(2): 635.

[29]

Fozo ZA, Ghazal AH, Hesham Gamal M, Matar SG, Kamal I, Ragab KM. A systematic review and meta-analysis of conventional versus robotic-assisted total knee arthroplasty. Cureus. 2023; 15(10): e46845.

[30]

Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015; 350: g7647.

[31]

Hetaimish BM, Khan MM, Simunovic N, al-Harbi HH, Bhandari M, Zalzal PK. Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty. 2012; 27(6): 1177–1182.

[32]

Burnett RS, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res. 2013; 471(1): 264–276.

[33]

de Pablos Fernandez J, Arbeloa-Gutierrez L, Arenas-Miquelez A. One-stage Total knee arthroplasty plus corrective osteotomy for osteoarthritis associated with severe extra-articular deformity. Arthrosc Tech. 2019; 8(11): e1403–e1410.

[34]

Sculco PK, Kahlenberg CA, Fragomen AT, Rozbruch SR. Management of Extra-articular Deformity in the setting of Total knee arthroplasty. J Am Acad Orthop Surg. 2019; 27(18): e819–e830.

[35]

Peng H, Ou A, Huang X, Wang C, Wang L, Yu T, et al. Osteotomy around the knee: the surgical treatment of osteoarthritis. Orthop Surg. 2021; 13(5): 1465–1473.

[36]

McCarthy MA, Bollier MJ. Medial patella subluxation: diagnosis and treatment. Iowa Orthop J. 2015; 35: 26–33.

[37]

Figueroa F, Parker D, Fritsch B, Oussedik S. New and evolving technologies for knee arthroplasty—computer navigation and robotics: state of the art. J ISAKOS. 2018; 3(1): 46–54.

[38]

Rhee SJ, Seo CH, Suh JT. Navigation-assisted total knee arthroplasty for patients with extra-articular deformity. Knee Surg Relat Res. 2013; 25(4): 194–201.

[39]

Shih YC, Chau MM, Arendt EA, Novacheck TF. Measuring lower extremity rotational alignment: a review of methods and case studies of clinical applications. J Bone Joint Surg Am. 2020; 102(4): 343–356.

[40]

Yu Z, Cai H, Liu Z. Factors that impact the patellofemoral contact stress in the TKA: a review. Art Ther. 2023; 5(1): 44.

[41]

Wang B, Xing D, Li JJ, Zhu Y, Dong S, Zhao B. Lateral or medial approach for valgus knee in total knee arthroplasty -which one is better? A systematic review. J Int Med Res. 2019; 47(11): 5400–5413.

[42]

Wan RCW, Fan JCH, Hung YW, Kwok KB, Lo CKM, Chung KY. Cost, safety, and rehabilitation of same-stage, bilateral total knee replacements compared to two-stage total knee replacements. Knee Surg Relat Res. 2021; 33(1): 17.

[43]

Pasquina PF, Miller M, Carvalho AJ, Corcoran M, Vandersea J, Johnson E, et al. Special considerations for multiple limb amputation. Curr Phys Med Rehabil Rep. 2014; 2(4): 273–289.

[44]

Florschutz AV, Fagan RP, Matar WY, Sawyer RG, Berrios-Torres SI. Surgical site infection risk factors and risk stratification. J Am Acad Orthop Surg. 2015; 23(Suppl): S8–S11.

[45]

Shakya P, Poudel S. Prehabilitation in patients before major surgery: a review article. J Nepal Med Assoc. 2022; 60(254): 909–915.

[46]

Zhang Y, Lang B, Zhao G, Wang F. Hemostatic effect of tourniquet combined with tranexamic acid in total knee arthroplasty: a network meta-analysis. J Orthop Surg Res. 2020; 15(1): 530.

[47]

Reddy K, Gharde P, Tayade H, Patil M, Reddy LS, Surya D. Advancements in robotic surgery: a comprehensive overview of current utilizations and upcoming frontiers. Cureus. 2023; 15(12): e50415.

[48]

Movassaghi K, Patel A, Ghulam-Jelani Z, Levine BR. Modern Total knee arthroplasty bearing designs and the role of the posterior cruciate ligament. Arthroplast Today. 2023; 21: 101130.

[49]

Utomo DN, Mahyudin F, Yanuar A, Widhiyanto L, Hernugrahanto KD. Correction of severe valgus deformity of knee osteoarthritis with non-constrained total knee arthroplasty implant: a case report. Int J Surg Case Rep. 2018; 53: 218–222.

[50]

Matsumoto T, Nakano N, Hayashi S, Takayama K, Maeda T, Ishida K, et al. Prosthetic orientation, limb alignment, and soft tissue balance with bi-cruciate stabilized total knee arthroplasty: a comparison between the handheld robot and conventional techniques. Int Orthop. 2023; 47(6): 1473–1480.

[51]

Gordon AC, Conditt MA, Verstraete MA. Achieving a balanced knee in robotic TKA. Sensors (Basel). 2021; 21(2): 535.

[52]

Ferri R, Digennaro V, Panciera A, Bulzacki Bogucki BD, Cecchin D, Manzetti M, et al. Management of patella maltracking after total knee arthroplasty: a systematic review. Musculoskelet Surg. 2023; 107(2): 143–157.

[53]

Cantivalli A, Cottino U, Bonasia DE, Rosso F, Rossi R. Robotic Systems in Knee Surgery: current concepts and future perspectives. Prosthesis. 2023; 5(4): 1257–1274.

[54]

Li T, Badre A, Alambeigi F, Tavakoli M. Robotic systems and navigation techniques in orthopedics: a historical review. Appl Sci. 2023; 13(17): 9768.

[55]

Christen B, Tanner L, Ettinger M, Bonnin MP, Koch PP, Calliess T. Comparative cost analysis of four different computer-assisted technologies to implant a Total knee arthroplasty over conventional instrumentation. J Pers Med. 2022; 12(2): 184.

[56]

Alturki AA, Alshammari NA, Albassam AL, Aljaafri ZA, Almugren TS. Robotic-assisted total knee arthroplasty for extra-articular femur deformity correction. J Surg Case Rep. 2023; 2023(7): rjad395.

[57]

Cook-Richardson S, Desai R. Robotic arm-assisted Total knee arthroplasty in the setting of combined extra-articular deformities of the femur and tibia. Case Rep Orthop. 2020; 2020: 5489646.

[58]

Fletcher J, Miskovic D. Computer-generated modelling in surgery. Semin Colon Rectal Surg. 2024; 35(1): 101003.

[59]

Pham MH, Hernandez NS, Stone LE. Preoperative robotics planning facilitates complex construct Design in Robot-Assisted Minimally Invasive Adult Spinal Deformity Surgery—a Preliminary Experience. J Clin Med. 2024; 13(7): 1829.

[60]

Hinloopen JH, Puijk R, Nolte PA, Schoones JW, de Ridder R, Pijls BG. The efficacy and safety of patient-specific instrumentation in primary total knee replacement: a systematic review and meta-analysis. Expert Rev Med Devices. 2023; 20(3): 245–252.

[61]

Karpyshyn JN, Bois AJ, Logan H, Harding GT, Bouliane MJ. 3D printed patient-specific cutting guides for bone grafting in reverse shoulder arthroplasty: a novel technique. J Shoulder Elb Arthroplast. 2023; 7: 24715492231162285.

[62]

Fortier LM, Gursoy S, Knapik DM, Chahla J. Three-dimensional patient specific instrumentation and cutting guide for medial closing wedge high Tibial osteotomy to correct valgus malalignment. Arthrosc Tech. 2022; 11(1): e13–e23.

[63]

Gong S, Xu W, Wang R, Wang Z, Wang B, Han L, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2019; 27(4): 1083–1095.

[64]

Xu Z, Wang W, Zhuang Z, Zhang Y. Effectiveness of total knee arthroplasty using three-dimensional printing technology for knee osteoarthritis accompanied with extra-articular deformity. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017; 31(8): 913–917.

[65]

Dong Z, Li Y, Tian H. Research progress on comparison of the application effects between personal specific instrumentation and computer-assisted navigation surgery in total knee arthroplasty. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021; 35(11): 1492–1498.

[66]

Odum SM, Fehring TK, G. Knee Society Crosswalk Writing. Can original knee society scores Be used to estimate new 2011 knee society scores? Clin Orthop Relat Res. 2017; 475(1): 160–167.

[67]

Thambiah MD, Nathan S, Seow BZ, Liang S, Lingaraj K. Patient satisfaction after total knee arthroplasty: an Asian perspective. Singapore Med J. 2015; 56(5): 259–263.

[68]

Zeng CY, Zhang ZR, Tang ZM, Hua FZ. Benefits and mechanisms of exercise training for knee osteoarthritis. Front Physiol. 2021; 12: 794062.

[69]

Ali O, Abdelbaki W, Shrestha A, Elbasi E, Alryalat MAA, Dwivedi YK. A systematic literature review of artificial intelligence in the healthcare sector: benefits, challenges, methodologies, and functionalities. J Innov Knowl. 2023; 8(1): 100333.

[70]

Park C, Yi C, Choi WJ, Lim HS, Yoon HU, You S(J)H. Long-term effects of deep-learning digital therapeutics on pain, movement control, and preliminary cost-effectiveness in low back pain: a randomized controlled trial. Digit Health. 2023; 9: 20552076231217817.

[71]

Minaei R, Salehpour M, Kouhestani E, Ghasemi M. A randomized double-blind prospective study comparing the efficacy of subperiosteal and Periarticular injections of a local anesthetic for postoperative pain management after Total knee arthroplasty. Arch Bone Jt Surg. 2023; 11(11): 704–710.

[72]

Marullo M, Vitale JA, Stucovitz E, Romagnoli S. Simultaneous bilateral unicompartmental knee replacement improves gait parameters in patients with bilateral knee osteoarthritis. Knee. 2019; 26(6): 1413–1420.

[73]

Mehta B, Ho K, Bido J, Memtsoudis SG, Parks ML, Russell L, et al. Bilateral vs unilateral Total knee arthroplasty: racial variation in utilization and in-hospital major complication rates. J Arthroplasty. 2021; 36(4): 1310–1317.

[74]

Courage O, Strom L, van Rooij F, Lalevée M, Heuzé D, Papin PE, et al. Higher rates of surgical and medical complications and mortality following TKA in patients aged >/= 80 years: a systematic review of comparative studies. EFORT Open Rev. 2021; 6(11): 1052–1062.

[75]

Kuperman EF, Schweizer M, Joy P, Gu X, Fang MM. The effects of advanced age on primary total knee arthroplasty: a meta-analysis and systematic review. BMC Geriatr. 2016; 16: 41.

[76]

Nandi M, Schreiber KL, Martel MO, Cornelius M, Campbell CM, Haythornthwaite JA, et al. Sex differences in negative affect and postoperative pain in patients undergoing total knee arthroplasty. Biol Sex Differ. 2019; 10(1): 23.

[77]

Atarere J, Agudile E, Orhurhu V, Agudile UM, Sorescu G, Suleiman ZA, et al. Racial and socioeconomic disparities in the utilization of TKA among patients with posttraumatic knee osteoarthritis: estimates from the United States National Inpatient Sample, 2011–2018. JB JS Open Access. 2022; 7(3): e22.0001.

[78]

Alvarez PM, McKeon JF, Spitzer AI, Krueger CA, Pigott M, Li M, et al. Socioeconomic factors affecting outcomes in total knee and hip arthroplasty: a systematic review on healthcare disparities. Art Ther. 2022; 4(1): 36.

[79]

Ward MM. Geographic differences in rates of primary Total knee arthroplasty in young and older adults: a comparison of 3 US states. J Rheumatol. 2022; 49(3): 307–311.

[80]

Bowden JL, Hunter DJ, Mills K, Allen K, Bennell K, Briggs AM, et al. The OARSI joint effort initiative: priorities for osteoarthritis management program implementation and research 2024-2028. Osteoarthr Cartil Open. 2023; 5(4): 100408.

[81]

Lavizzo-Mourey RJ, Besser RE, Williams DR. Understanding and mitigating health inequities -past, current, and future directions. N Engl J Med. 2021; 384(18): 1681–1684.

[82]

Holbert SE, Brennan JC, Johnson AH, MacDonald JH, Turcotte JJ, King PJ. Racial disparities in outcomes of Total joint arthroplasty at a single institution: have we made progress? Arthroplast Today. 2023; 19: 101059.

[83]

Pakkasjärvi N, Luthra T, Anand S. Artificial intelligence in surgical learning. Surgeries. 2023; 4: 86–97.

[84]

Pokhrel S, Alsadoon A, Prasad PWC, Paul M. A novel augmented reality (AR) scheme for knee replacement surgery by considering cutting error accuracy. Int J Med Robot. 2019; 15(1): e1958.

[85]

Chan HHL, Haerle SK, Daly MJ, Zheng J, Philp L, Ferrari M, et al. An integrated augmented reality surgical navigation platform using multi-modality imaging for guidance. PLoS One. 2021; 16(4): e0250558.

[86]

Fischer KI, De Faoite D, Rose M. Patient-reported outcomes feedback report for knee arthroplasty patients should present selective information in a simple design -findings of a qualitative study. J Patient Rep Outcomes. 2020; 4(1): 6.

[87]

Deep K, Shankar S, Mahendra A. Computer assisted navigation in total knee and hip arthroplasty. Sicot J. 2017; 3: 50.

[88]

Beyer F, Lützner C, Stalp M, Köster G, Lützner J. Does the use of patient-specific instrumentation improve resource use in the operating room and outcome after total knee arthroplasty?–A multicenter study. PLoS One. 2022; 17(11): e0277464.

[89]

Alemayehu DG, Smith J, Johnson A, Brown T, Lee C, Miller D, et al. Preoperative planning using 3D printing Technology in Orthopedic Surgery. Biomed Res Int. 2021; 2021: 7940242.

[90]

Saharan A, Kumar M. Technologies and techniques in Total knee replacement surgery: a comprehensive review. 2023.

[91]

Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, et al. The role of 3D printing in planning complex medical procedures and training of medical professionals-Cross-sectional multispecialty review. Int J Environ Res Public Health. 2022; 19(6): 3331.

[92]

Vedoya SP, Sel HD. Total knee arthroplasty and extra-articular deformity: deformity correction with intra-articular bone resections. 10 years follow up. J Orthop. 2021; 23: 219–224.

[93]

Botezatu I, Marinescu R, Laptoiu D. Minimally invasive-percutaneous surgery -recent developments of the foot surgery techniques. J Med Life. 2015; 8(Spec Issue): 87–93.

[94]

Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering (Beijing). 2017; 3(1): 16–27.

[95]

Jiang S, Tian G, Li X, Yang Z, Wang F, Tian Z. Research Progress on stem cell therapies for articular cartilage regeneration. Stem Cells Int. 2021; 2021: 8882505.

[96]

Batailler C, Swan J, Sappey Marinier E, Servien E, Lustig S. New Technologies in Knee Arthroplasty: current concepts. J Clin Med. 2020; 10(1): 47.

RIGHTS & PERMISSIONS

2024 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/