The Role of Microvascular Variations in the Process of Intervertebral Disk Degeneration and Its Regulatory Mechanisms: A Literature Review

Si-Ping Zhang, , Min Tong, , Shi-Da Li, , Bin Zhang, , Wenhao Zhang, , Rong Wang, , Zhen-Yu Dong, , Yi-Fei Huang,

Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (11) : 2587 -2597.

PDF
Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (11) : 2587 -2597. DOI: 10.1111/os.14209
REVIEW ARTICLE

The Role of Microvascular Variations in the Process of Intervertebral Disk Degeneration and Its Regulatory Mechanisms: A Literature Review

Author information +
History +
PDF

Abstract

Microvascular changes are considered key factors in the process of intervertebral disk degeneration (IDD). Microvascular invasion and growth into the nucleus pulposus (NP) and cartilaginous endplates are unfavorable factors that trigger IDD. In contrast, the rich distribution of microvessels in the bony endplates and outer layers of the annulus fibrosus is an important safeguard for the nutrient supply and metabolism of the intervertebral disk (IVD). In particular, the adequate supply of microvessels in the bony endplates is the main source of the nutritional supply for the entire IVD. Microvessels can affect the progression of IDD through a variety of pathways. Many studies have explored the effects of microvessel alterations in the NP, annulus fibrosus, cartilaginous endplates, and bony endplates on the local microenvironment through inflammation, apoptosis, and senescence. Studies also elucidated the important roles of microvessel alterations in the process of IDD, as well as conducted in-depth explorations of cytokines and biologics that can inhibit or promote the ingrowth of microvessels. Therefore, the present manuscript reviews the published literature on the effects of microvascular changes on IVD to summarize the roles of microvessels in IVD and elaborate on the mechanisms of action that promote or inhibit de novo microvessel formation in IVD.

Keywords

annulus fibrosus / endplates / intervertebral disk degeneration / microvasculature / nucleus pulposus

Cite this article

Download citation ▾
Si-Ping Zhang,, Min Tong,, Shi-Da Li,, Bin Zhang,, Wenhao Zhang,, Rong Wang,, Zhen-Yu Dong,, Yi-Fei Huang,. The Role of Microvascular Variations in the Process of Intervertebral Disk Degeneration and Its Regulatory Mechanisms: A Literature Review. Orthopaedic Surgery, 2024, 16(11): 2587-2597 DOI:10.1111/os.14209

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Knezevic NN, Candido KD, Vlaeyen J, Van Zundert J, Cohen SP. Low back pain. Lancet. 2021; 398(10294): 78–92.

[2]

Kent P, Haines T, O’Sullivan P, Smith A, Campbell A, Schutze R, et al. Cognitive functional therapy with or without movement sensor biofeedback versus usual care for chronic, disabling low back pain (RESTORE): a randomised, controlled, three-arm, parallel group, phase 3, clinical trial. Lancet. 2023; 401(10391): 1866–1877.

[3]

Zhang W, Sun T, Li Y, Yang M, Zhao Y, Liu J, et al. Application of stem cells in the repair of intervertebral disc degeneration. Stem Cell Res Ther. 2022; 13(1): 70.

[4]

Wu PH, Kim HS, Jang IT. Intervertebral disc diseases PART 2: a review of the current diagnostic and treatment strategies for intervertebral disc disease. Int J Mol Sci. 2020; 21(6): 2135.

[5]

Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-current therapeutic options and challenges. Front Public Health. 2023; 11: 1156749.

[6]

Kong M, Xu D, Gao C, Zhu K, Han S, Zhang H, et al. Risk factors for recurrent L4-5 disc herniation after percutaneous endoscopic Transforaminal discectomy: aretrospective analysis of 654 cases. Risk Manag Healthc Policy. 2020; 13: 3051–3065.

[7]

Eisenstein SM, Balain B, Roberts S. Current treatment options for intervertebral disc pathologies. Cartilage. 2020; 11(2): 143–151.

[8]

Liao Z, Li S, Lu S, Liu H, Li G, Ma L, et al. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials. 2021; 274: 120850.

[9]

Wang J, Huang L, Huang Y, Jiang Y, Zhang L, Feng G, et al. Therapeutic effect of the injectable thermosensitive hydrogel loaded with SHP099 on intervertebral disc degeneration. Life Sci. 2021; 266: 118891.

[10]

Wang Y, Wu Y, Zhang B, Zheng C, Hu C, Guo C, et al. Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system. Biomaterials. 2023; 298: 122132.

[11]

Shirazi-Adl A, Taheri M, Urban JP. Analysis of cell viability in intervertebral disc: effect of endplate permeability on cell population. J Biomech. 2010; 43(7): 1330–1336.

[12]

Sun Z, Zhao H, Liu B, Gao Y, Tang WH, Liu ZH, et al. AF cell derived exosomes regulate endothelial cell migration and inflammation: implications for vascularization in intervertebral disc degeneration. Life Sci. 2021; 265: 118778.

[13]

Imanishi T, Akeda K, Murata K, Sudo A. Effect of diminished flow in rabbit lumbar arteries on intervertebral disc matrix changes using MRI T2-mapping and histology. BMC Musculoskelet Disord. 2019; 20(1): 347.

[14]

Sun Z, Liu B, Luo ZJ. The immune privilege of the intervertebral disc: implications for intervertebral disc degeneration treatment. Int J Med Sci. 2020; 17(5): 685–692.

[15]

Fournier DE, Kiser PK, Shoemaker JK, Battié MC, Séguin CA. Vascularization of the human intervertebral disc: a scoping review. JOR Spine. 2020; 3(4): e1123.

[16]

Cornejo MC, Cho SK, Giannarelli C, Iatridis JC, Purmessur D. Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines. Osteoarthr Cartil. 2015; 23(3): 487–496.

[17]

Zhang X, Shu S, Feng Z, Qiu Y, Bao H, Zhu Z. Microtubule stabilization promotes the synthesis of type 2 collagen in nucleus pulposus cell by activating hippo-yap pathway. Front Pharmacol. 2023; 14: 1102318.

[18]

Zhou X, Wang J, Fang W, Tao Y, Zhao T, Xia K, et al. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater. 2018; 71: 496–509.

[19]

Rätsep T, Minajeva A, Asser T. Relationship between neovascularization and degenerative changes in herniated lumbar intervertebral discs. Eur Spine J. 2013; 22(11): 2474–2480.

[20]

Binch AL, Cole AA, Breakwell LM, Michael AL, Chiverton N, Creemers LB, et al. Class 3 semaphorins expression and association with innervation and angiogenesis within the degenerate human intervertebral disc. Oncotarget. 2015; 6(21): 18338–18354.

[21]

Torre OM, Mroz V, Bartelstein MK, Huang AH, Iatridis JC. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann N Y Acad Sci. 2019; 1442(1): 61–78.

[22]

Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res. 2020; 379(3): 429–444.

[23]

Nerlich AG, Schaaf R, Wälchli B, Boos N. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur Spine J. 2007; 16(4): 547–555.

[24]

Gruber HE, Ashraf N, Kilburn J, Williams C, Norton HJ, Gordon BE, et al. Vertebral endplate architecture and vascularization: application of micro-computerized tomography, a vascular tracer, and immunocytochemistry in analyses of disc degeneration in the aging sand rat. Spine (Phila Pa 1976). 2005; 30(23): 2593–2600.

[25]

Wu Y, Loaiza J, Banerji R, Blouin O, Morgan E. Structure-function relationships of the human vertebral endplate. JOR Spine. 2021; 4(3): e1170.

[26]

Zhang JF, Wang GL, Zhou ZJ, Fang XQ, Chen S, Fan SW. Expression of matrix Metalloproteinases, tissue inhibitors of Metalloproteinases, and interleukins in vertebral cartilage endplate. Orthop Surg. 2018; 10(4): 306–311.

[27]

Zhan JW, Wang SQ, Feng MS, Gao JH, Wei X, Yu J, et al. Effects of axial compression and distraction on vascular bud and VEGFA expression in the vertebral endplate of an ex vivo rabbit spinal motion segment culture model. Spine (Phila Pa 1976). 2021; 46(7): 421–432.

[28]

Ou-Yang DC, Kleck CJ, Ackert-Bicknell CL. Genetics of intervertebral disc degeneration. Curr Osteoporos Rep. 2023; 21(1): 56–64.

[29]

Habib M, Hussien S, Jeon O, Lotz JC, Wu PIK, Alsberg E, et al. Intradiscal treatment of the cartilage endplate for improving solute transport and disc nutrition. Front Bioeng Biotechnol. 2023; 11: 1111356.

[30]

Fields AJ, Ballatori A, Liebenberg EC, Lotz JC. Contribution of the endplates to disc degeneration. Curr Mol Biol Rep. 2018; 4(4): 151–160.

[31]

Martin JT, Wesorick B, Oldweiler AB, Kosinski AS, Goode AP, DeFrate LE. In vivo fluid transport in human intervertebral discs varies by spinal level and disc region. JOR Spine. 2022; 5(2): e1199.

[32]

Capossela S, Bertolo A, Gunasekera K, Pötzel T, Baur M, Stoyanov JV. VEGF vascularization pathway in human intervertebral disc does not change during the disc degeneration process. BMC Res Notes. 2018; 11(1): 333.

[33]

Kim JH, Ham CH, Kwon WK. Current knowledge and future therapeutic prospects in symptomatic intervertebral disc degeneration. Yonsei Med J. 2022; 63(3): 199–210.

[34]

Ozaki S, Muro T, Ito S, Mizushima M. Neovascularization of the outermost area of herniated lumbar intervertebral discs. J Orthop Sci. 1999; 4(4): 286–292.

[35]

Johnson WE, Caterson B, Eisenstein SM, Roberts S. Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine (Phila Pa 1976). 2005; 30(10): 1139–1147.

[36]

Lu XY, Ding XH, Zhong LJ, Xia H, Chen XD, Huang H. Expression and significance of VEGF and p53 in degenerate intervertebral disc tissue. Asian Pac J Trop Med. 2013; 6(1): 79–81.

[37]

Stefanakis M, Al-Abbasi M, Harding I, Pollintine P, Dolan P, Tarlton J, et al. Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine (Phila Pa 1976). 2012; 37(22): 1883–1891.

[38]

Lama P, Le Maitre CL, Harding IJ, Dolan P, Adams MA. Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue. J Anat. 2018; 233(1): 86–97.

[39]

Freemont AJ, Watkins A, Le Maitre C, Baird P, Jeziorska M, Knight MT, et al. Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol. 2002; 197(3): 286–292.

[40]

Quan H, Zuo X, Huan Y, Wang X, Yao Z, Wang C, et al. A systematic morphology study on the effect of high glucose on intervertebral disc endplate degeneration in mice. Heliyon. 2023; 9(2): e13295.

[41]

Karamouzian S, Eskandary H, Faramarzee M, Saba M, Safizade H, Ghadipasha M, et al. Frequency of lumbar intervertebral disc calcification and angiogenesis, and their correlation with clinical, surgical, and magnetic resonance imaging findings. Spine (Phila Pa 1976). 2010; 35(8): 881–886.

[42]

Ohba T, Haro H, Ando T, Wako M, Suenaga F, Aso Y, et al. TNF-alpha-induced NF-kappaB signaling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues. J Orthop Res. 2009; 27(2): 229–235.

[43]

Sato J, Inage K, Miyagi M, Sakuma Y, Yamauchi K, Koda M, et al. Inhibiting vascular endothelial growth factor in injured intervertebral discs attenuates pain-related neuropeptide expression in dorsal root ganglia in rats. Asian Spine J. 2017; 11(4): 556–561.

[44]

Wang J, Huang L, Yang X, Zhu C, Huang Y, He X, et al. The regulatory effect of MicroRNA-101-3p on disc degeneration by the STC1/VEGF/MAPK pathway. Oxid Med Cell Longev. 2021; 2021: 1073458.

[45]

Qiu S, Shi C, Anbazhagan AN, das V, Arora V, Kc R, et al. Absence of VEGFR-1/Flt-1 signaling pathway in mice results in insensitivity to discogenic low back pain in an established disc injury mouse model. J Cell Physiol. 2020; 235(6): 5305–5317.

[46]

Kokubo Y, Uchida K, Kobayashi S, Yayama T, Sato R, Nakajima H, et al. Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. Laboratory investigation. J Neurosurg Spine. 2008; 9(3): 285–295.

[47]

He M, Pang J, Sun H, Zheng G, Lin Y, Ge W. Overexpression of TIMP3 inhibits discogenic pain by suppressing angiogenesis and the expression of substance P in nucleus pulposus. Mol Med Rep. 2020; 21(3): 1163–1171.

[48]

Binch AL, Cole AA, Breakwell LM, Michael AL, Chiverton N, Cross AK, et al. Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Res Ther. 2014; 16(5): 416.

[49]

Li XF, Xue CC, Zhao YJ, Cheng SD, Zhao DF, Liang QQ, et al. Deletion of Opg leads to increased neovascularization and expression of inflammatory cytokines in the lumbar intervertebral disc of mice. Spine (Phila Pa 1976). 2017; 42(1): E8–E14.

[50]

Hennigs JK, Cao A, Li CG, Shi M, Mienert J, Miyagawa K, et al. PPARγ-p53-mediated Vasculoregenerative program to reverse pulmonary hypertension. Circ Res. 2021; 128(3): 401–418.

[51]

Farhang Ghahremani M, Goossens S, Nittner D, Bisteau X, Bartunkova S, Zwolinska A, et al. p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ. 2013; 20(7): 888–897.

[52]

Haupt S, Gamell C, Wolyniec K, Haupt Y. Interplay between p53 and VEGF: how to prevent the guardian from becoming a villain. Cell Death Differ. 2013; 20(7): 852–854.

[53]

Vermeulen PB, Roland L, Mertens V, van Marck E, de Bruijn EA, van Oosterom AT, et al. Correlation of intratumoral microvessel density and p53 protein overexpression in human colorectal adenocarcinoma. Microvasc Res. 1996; 51(2): 164–174.

[54]

Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov. 2023; 9(1): 433.

[55]

Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV. Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater. 2015; 30: 104–116. discussion 116-7.

[56]

Li H, Pan H, Xiao C, Li H, Long L, Wang X, et al. IL-1β-mediated inflammatory responses in intervertebral disc degeneration: mechanisms, signaling pathways, and therapeutic potential. Heliyon. 2023; 9(9): e19951.

[57]

Joyce K, Mohd Isa IL, Krouwels A, Creemers L, Devitt A, Pandit A. The role of altered glycosylation in human nucleus pulposus cells in inflammation and degeneration. Eur Cell Mater. 2021; 41: 401–420.

[58]

Wang H, Jiang Z, Pang Z, Zhou T, Gu Y. Acacetin alleviates inflammation and matrix degradation in nucleus pulposus cells and ameliorates intervertebral disc degeneration in vivo. Drug des Devel Ther. 2020; 14: 4801–4813.

[59]

Zhang W, Wang H, Yuan Z, Chu G, Sun H, Yu Z, et al. Moderate mechanical stimulation rescues degenerative annulus fibrosus by suppressing caveolin-1 mediated pro-inflammatory signaling pathway. Int J Biol Sci. 2021; 17(5): 1395–1412.

[60]

Liu W, Liu D, Zheng J, Shi P, Chou PH, Oh C, et al. Annulus fibrosus cells express and utilize C-C chemokine receptor 5 (CCR5) for migration. Spine J. 2017; 17(5): 720–726.

[61]

Kato T, Haro H, Komori H, Shinomiya K. Sequential dynamics of inflammatory cytokine, angiogenesis inducing factor and matrix degrading enzymes during spontaneous resorption of the herniated disc. J Orthop Res. 2004; 22(4): 895–900.

[62]

Hsu YH, Lin RM, Chiu YS, Liu WL, Huang KY. Effects of IL-1β IL-20, and BMP-2 on intervertebral disc inflammation under hypoxia. J Clin Med. 2020; 9(1): 140.

[63]

Hsieh MY, Chen WY, Jiang MJ, Cheng BC, Huang TY, Chang MS. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun. 2006; 7(3): 234–242.

[64]

Sato J, Inage K, Miyagi M, Sakuma Y, Yamauchi K, Suzuki M, et al. Vascular endothelial growth factor in degenerating intervertebral discs of rat caudal vertebrae. Spine Surg Relat Res. 2018; 2(1): 42–47.

[65]

Song Q, Zhang F, Wang K, Chen Z, Li Q, Liu Z, et al. MiR-874-3p plays a protective role in intervertebral disc degeneration by suppressing MMP2 and MMP3. Eur J Pharmacol. 2021; 895: 173891.

[66]

Hu B, Wang J, Wu X, Chen Y, Yuan W, Chen H. Interleukin-17 upregulates vascular endothelial growth factor by activating the JAK/STAT pathway in nucleus pulposus cells. Joint Bone Spine. 2017; 84(3): 327–334.

[67]

Hwang MH, Son HG, Kim J, Choi H. In vitro model of distinct catabolic and inflammatory response patterns of endothelial cells to intervertebral disc cell degeneration. Sci Rep. 2020; 10(1): 20596.

[68]

Ge Y, Chen Y, Guo C, Luo H, Fu F, Ji W, et al. Pyroptosis and intervertebral disc degeneration: mechanistic insights and therapeutic implications. J Inflamm Res. 2022; 15: 5857–5871.

[69]

Qin H, Zhao X, Hu YJ, Wang S, Ma Y, He S, et al. Inhibition of SDF-1/CXCR4 Axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis. Biomed Res Int. 2021; 2021: 8852574.

[70]

Li W, Liu C, Burns N, Hayashi J, Yoshida A, Sajja A, et al. Alterations in the spatiotemporal expression of the chemokine receptor CXCR4 in endothelial cells cause failure of hierarchical vascular branching. Dev Biol. 2021; 477: 70–84.

[71]

Bordenave J, Tu L, Berrebeh N, Thuillet R, Cumont A, le Vely B, et al. Lineage tracing reveals the dynamic contribution of Pericytes to the blood vessel remodeling in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2020; 40(3): 766–782.

[72]

Zhang H, He B. SDF1/CXCR4 axis plays a role in angiogenesis during the degeneration of intervertebral discs. Mol Med Rep. 2019; 20(2): 1203–1211.

[73]

Zhang H, Wang P, Zhang X, Zhao W, Ren H, Hu Z. SDF1/CXCR7 signaling Axis participates in angiogenesis in degenerated discs via the PI3K/AKT pathway. DNA Cell Biol. 2019; 38(5): 457–467.

[74]

Binch AL, Cole AA, Breakwell LM, Michael AL, Chiverton N, Creemers LB, et al. Nerves are more abundant than blood vessels in the degenerate human intervertebral disc. Arthritis Res Ther. 2015; 17: 370.

[75]

Rauff A, LaBelle SA, Strobel HA, Hoying JB, Weiss JA. Imaging the dynamic interaction between sprouting microvessels and the extracellular matrix. Front Physiol. 2019; 10: 1011.

[76]

Chen D, Jiang X. Correlation between proteolytic enzymes and microangiogenesis in degenerative intervertebral disc nucleus. J Invest Surg. 2021; 34(6): 679–684.

[77]

Zhang S, Wang P, Hu B, Liu W, Lv X, Chen S, et al. HSP90 inhibitor 17-AAG attenuates nucleus Pulposus inflammation and catabolism induced by M1-polarized macrophages. Front Cell Dev Biol. 2021; 9: 796974.

[78]

Sun Y, Lyu M, Lu Q, Cheung K, Leung V. Current perspectives on nucleus Pulposus fibrosis in disc degeneration and repair. Int J Mol Sci. 2022; 23(12): 6612.

[79]

Luo Y, Yang Z, Yu Y, Zhang P. HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer. Int J Biol Macromol. 2022; 222: 2225–2243.

[80]

Liu Y, Hu G, Li Y, Kong X, Yang K, Li Z, et al. Research on the biological mechanism and potential application of CEMIP. Front Immunol. 2023; 14: 1222425.

[81]

Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen PY, Zhuang ZW, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest. 2011; 121(7): 2668–2678.

[82]

Zhang S, Wang P, Hu B, Lv X, Liu W, Chen S, et al. Inhibiting heat shock protein 90 attenuates nucleus Pulposus fibrosis and pathologic angiogenesis induced by macrophages via Down-regulating cell migration-inducing protein. Am J Pathol. 2023; 193(7): 960–976.

[83]

Yi YY, Chen H, Zhang SB, Xu HW, Fang XY, Wang SJ. Exogenous klotho ameliorates extracellular matrix degradation and angiogenesis in intervertebral disc degeneration via inhibition of the Rac1/PAK1/MMP-2 signaling axis. Mech Ageing Dev. 2022; 207: 111715.

[84]

Law AY, Wong CK. Stanniocalcin-1 and -2 promote angiogenic sprouting in HUVECs via VEGF/VEGFR2 and angiopoietin signaling pathways. Mol Cell Endocrinol. 2013; 374(1–2): 73–81.

[85]

Dalvin LA, Hartnett ME, Bretz CA, Hann CR, Cui RZ, Marmorstein AD, et al. Stanniocalcin-1 is a modifier of oxygen-induced retinopathy severity. Curr Eye Res. 2020; 45(1): 46–51.

[86]

Kwon WK, Moon HJ, Kwon TH, Park YK, Kim JH. Influence of rabbit notochordal cells on symptomatic intervertebral disc degeneration: anti-angiogenic capacity on human endothelial cell proliferation under hypoxia. Osteoarthr Cartil. 2017; 25(10): 1738–1746.

[87]

Sun Z, Liu B, Liu ZH, Song W, Wang D, Chen BY, et al. Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/β-catenin Axis. Mol Ther Nucleic Acids. 2020; 22: 1092–1106.

[88]

Saggese T, Thambyah A, Wade K, McGlashan SR. Differential response of bovine mature nucleus Pulposus and Notochordal cells to hydrostatic pressure and glucose restriction. Cartilage. 2020; 11(2): 221–233.

[89]

Li Y, Baccouche B, Olayinka O, Serikbaeva A, Kazlauskas A. The role of the Wnt pathway in VEGF/anti-VEGF-dependent control of the endothelial cell barrier. Invest Ophthalmol Vis Sci. 2021; 62(12): 17.

[90]

Cerezo AB, Hornedo-Ortega R, Álvarez-Fernández MA, Troncoso AM, García-Parrilla MC. Inhibition of VEGF-induced VEGFR-2 activation and HUVEC migration by melatonin and other bioactive Indolic compounds. Nutrients. 2017; 9(3): 249.

[91]

Shen C, Li Y, Chen Y, Huang L, Zhang F, Wu W. Melatonin prevents the binding of vascular endothelial growth factor to its receptor and promotes the expression of extracellular matrix-associated genes in nucleus pulposus cells. Exp Ther Med. 2020; 20(5): 106.

[92]

Qi JH, Anand-Apte B. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis. 2015; 20(4): 523–534.

[93]

He M, Pang J, Sun H, Zheng G, Lin Y, Ge W. P14ARF inhibits regional inflammation and vascularization in intervertebral disc degeneration by upregulating TIMP3. Am J Physiol Cell Physiol. 2020; 318(4): C751–C761.

[94]

Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, et al. New insights into antiangiogenic therapy resistance in cancer: mechanisms and therapeutic aspects. Drug Resist Updat. 2022; 64: 100849.

[95]

Chen Q, Wang J, Xia Q, Wu L, Chen F, Li L, et al. Treatment outcomes of injectable thermosensitive hydrogel containing bevacizumab in intervertebral disc degeneration. Front Bioeng Biotechnol. 2022; 10: 976706.

[96]

Sun K, Jiang J, Wang Y, Sun X, Zhu J, Xu X, et al. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res Rev. 2022; 81: 101733.

[97]

Ye F, Lyu FJ, Wang H, Zheng Z. The involvement of immune system in intervertebral disc herniation and degeneration. JOR Spine. 2022; 5(1): e1196.

[98]

Wang N, Mi Z, Chen S, Fang X, Xi Z, Xu W, et al. Analysis of global research hotspots and trends in immune cells in intervertebral disc degeneration: a bibliometric study. Hum Vaccin Immunother. 2023; 19(3): 2274220.

[99]

Moon HJ, Yurube T, Lozito TP, Pohl P, Hartman RA, Sowa GA, et al. Effects of secreted factors in culture medium of annulus fibrosus cells on microvascular endothelial cells: elucidating the possible pathomechanisms of matrix degradation and nerve in-growth in disc degeneration. Osteoarthr Cartil. 2014; 22(2): 344–354.

[100]

Kwon WK, Moon HJ, Kwon TH, Park YK, Kim JH. The role of hypoxia in angiogenesis and extracellular matrix regulation of intervertebral disc cells during inflammatory reactions. Neurosurgery. 2017; 81(5): 867–875.

[101]

Pohl PH, Lozito TP. CupermanT Catabolic effects of endothelial cell-derived microparticles on disc cells: implications in intervertebral disc neovascularization and degeneration. J Orthop Res. 2016; 34(8): 1466–1474.

[102]

Pauli D, von Treuheim T, Torre OM, Ferreri ED, Nasser P, Abbondandolo A, et al. Tenomodulin and Chondromodulin-1 are both required to maintain biomechanical function and prevent intervertebral disc degeneration. Cartilage. 2021; 13(2_suppl): 604S–614S.

[103]

Lin D, Alberton P, Delgado Caceres M, Prein C, Clausen-Schaumann H, Dong J, et al. Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration. Aging Cell. 2020; 19(3): e13091.

[104]

Mima Y, Suzuki S, Fujii T, Morikawa T, Tamaki S, Takubo K, et al. Potential involvement of semaphorin 3A in maintaining intervertebral disc tissue homeostasis. J Orthop Res. 2019; 37(4): 972–980.

[105]

Ahmadi H, Amini A, Fadaei Fathabady F, Mostafavinia A, Zare F, Ebrahimpour-malekshah R, et al. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther. 2020; 11(1): 494.

[106]

Hwang MH, Shin JH, Kim KS, Yoo CM, Jo GE, Kim JH, et al. Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebral disc degeneration in vitro. Photochem Photobiol. 2015; 91(2): 403–410.

[107]

Hwang MH, Lee JW, Son HG, Kim J, Choi H. Effects of photobiomodulation on annulus fibrosus cells derived from degenerative disc disease patients exposed to microvascular endothelial cells conditioned medium. Sci Rep. 2020; 10(1): 9655.

[108]

Kim AG, Kim TW, Kwon WK, Lee KH, Jeong S, Hwang MH, et al. Microfluidic Chip with low constant-current stimulation (LCCS) platform: human nucleus Pulposus degeneration in vitro model for symptomatic intervertebral disc. Micromachines (Basel). 2021; 12(11): 1291.

[109]

Kim TW, Kim AG, Lee KH, Hwang MH, Choi H. Microfluidic Electroceuticals platform for therapeutic strategies of intervertebral disc degeneration: effects of electrical stimulation on human nucleus Pulposus cells under inflammatory conditions. Int J Mol Sci. 2022; 23(17): 10122.

[110]

Tseng MC, Lim J, Chu YC, Chen CW, Feng CK, Wang JL. Dynamic pressure stimulation upregulates collagen II and Aggrecan in nucleus Pulposus cells through calcium signaling. Spine (Phila Pa 1976). 2022; 47(15): 1111–1119.

[111]

Li YH, Wu HL, Li Z, Li BB, Zhu M, Chen D, et al. Species variation in the cartilaginous endplate of the lumbar intervertebral disc. JOR Spine. 2022; 5(3): e1218.

[112]

Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S. Treatment of intervertebral disc degeneration. Orthop Surg. 2022; 14(7): 1271–1280.

[113]

Hee HT, Chuah YJ, Tan BH, Setiobudi T, Wong HK. Vascularization and morphological changes of the endplate after axial compression and distraction of the intervertebral disc. Spine (Phila Pa 1976). 2011; 36(7): 505–511.

[114]

Won HY, Park JB, Park EY, Riew KD. Effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats. J Neurosurg Spine. 2009; 11(6): 741–748.

[115]

Li X, Xie Y, Lu R, Zhang Y, Li Q, Kober T, et al. Q-Dixon and GRAPPATINI T2 mapping parameters: awhole spinal assessment of the relationship between osteoporosis and intervertebral disc degeneration. J Magn Reson Imaging. 2022; 55(5): 1536–1546.

[116]

Geng J, Huang P, Wang L, Li Q, Liu Y, Yu A, et al. The association of lumbar disc degeneration with lumbar vertebral trabecular volumetric bone mineral density in an urban population of young and middle-aged community-dwelling Chinese adults: a cross-sectional study. J Bone Miner Metab. 2023; 41(4): 522–532.

[117]

Wang LT, Chen LR, Chen KH. Hormone-related and drug-induced osteoporosis: acellular and molecular overview. Int J Mol Sci. 2023; 24(6): 5814.

[118]

Ashinsky BG, Bonnevie ED, Mandalapu SA, Pickup S, Wang C, Han L, et al. Intervertebral disc degeneration is associated with aberrant endplate remodeling and reduced small molecule transport. J Bone Miner Res. 2020; 35(8): 1572–1581.

[119]

Yuan W, Che W, Jiang YQ, Yuan FL, Wang HR, Zheng GL, et al. Establishment of intervertebral disc degeneration model induced by ischemic sub-endplate in rat tail. Spine J. 2015; 15(5): 1050–1059.

[120]

Xu HM, Hu F, Wang XY, Tong SL. Relationship between apoptosis of endplate microvasculature and degeneration of the intervertebral disk. World Neurosurg. 2019; 125: e392–e397.

[121]

Zhan JW, Wang SQ, Feng MS, Wei X, Yu J, Yin XL, et al. Constant compression decreases vascular bud and VEGFA expression ORYin a rabbit vertebral endplate ex vivo culture model. PLoS One. 2020; 15(6): e0234747.

[122]

Chen B, Zhu R, Hu H, Zhan M, Wang T, Huang F, et al. Elimination of senescent cells by Senolytics facilitates bony endplate microvessel formation and mitigates disc degeneration in aged mice. Front Cell Dev Biol. 2022; 10: 853688.

[123]

Gullbrand SE, Peterson J, Mastropolo R, Lawrence JP, Lopes L, Lotz J, et al. Drug-induced changes to the vertebral endplate vasculature affect transport into the intervertebral disc in vivo. J Orthop Res. 2014; 32(12): 1694–1700.

RIGHTS & PERMISSIONS

2024 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/