Development and Validation of a Machine Learning Algorithm to Predict the Risk of Blood Transfusion after Total Hip Replacement in Patients with Femoral Neck Fractures: A Multicenter Retrospective Cohort Study
Jieyang Zhu, , Chenxi Xu, , Yi Jiang, , Jinyu Zhu, , Mengyun Tu, , Xiaobing Yan, , Zeren Shen, , Zhenqi Lou,
Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (8) : 2066 -2080.
Development and Validation of a Machine Learning Algorithm to Predict the Risk of Blood Transfusion after Total Hip Replacement in Patients with Femoral Neck Fractures: A Multicenter Retrospective Cohort Study
Objective: Total hip arthroplasty (THA) remains the primary treatment option for femoral neck fractures in elderly patients. This study aims to explore the risk factors associated with allogeneic blood transfusion after surgery and to develop a dynamic prediction model to predict post-operative blood transfusion requirements. This will provide more accurate guidance for perioperative humoral management and rational allocation of medical resources.
Methods: We retrospectively analyzed data from 829 patients who underwent total hip arthroplasty for femoral neck fractures at three third-class hospitals between January 2017 and August 2023. Patient data from one hospital were used for model development, whereas data from the other two hospitals were used for external validation. Logistic regression analysis was used to screen the characteristic subsets related to blood transfusion. Various machine learning algorithms, including logistic regression, SVA (support vector machine), K-NN (k-nearest neighbors), MLP (multilayer perceptron), naive Bayes, decision tree, random forest, and gradient boosting, were used to process the data and construct prediction models. A 10-fold cross-validation algorithm facilitated the comparison of the predictive performance of the models, resulting in the selection of the best-performing model for the development of an open-source computing program.
Results: BMI (body mass index), surgical duration, IBL (intraoperative blood loss), anticoagulant history, utilization rate of tranexamic acid, Pre-Hb, and Pre-ALB were included in the model as well as independent risk factors. The average area under curve (AUC) values for each model were as follows: logistic regression (0.98); SVA (0.91); k-NN (0.87) MLP, (0.96); naive Bayes (0.97); decision tree (0.87); random forest (0.96); and gradient boosting (0.97). A web calculator based on the best model is available at: (https://nomo99.shinyapps.io/dynnomapp/).
Conclusion: Utilizing a computer algorithm, a prediction model with a high discrimination accuracy (AUC > 0.5) was developed. The logistic regression model demonstrated superior differentiation and reliability, thereby successfully passing external validation. The model’s strong generalizability and applicability have significant implications for clinicians, aiding in the identification of patients at high risk for postoperative blood transfusion.
Allogeneic transfusion / Femoral neck fracture / Machine learning / Prediction model / Total hip arthroplasty
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
National Health Commission of the People’s Republic of China. WS/T796-2022 Guidelines for Perioperative Blood Management [S/OL]. Beijing: National Health Commission of the People’s Republic of China; 2022. https://www.nhc.gov.cn/wjw/s9493/202202/5e3bc1a664094da692bcb3e2e85efd34.shtml |
| [19] |
|
| [20] |
|
| [21] |
Investigators from Western Michigan University Released New Data on Support Vector Machines (Multiresolution Hierarchical Support Vector Machines for the Classification of Large Datasets). Robotics and Machine Learning Daily News; 2022. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
FIBTEM as a predictor of intra-and postoperative blood loss in revision total hip arthroplasty: A prospective observational study. Medicine. 2018; 97(22): e10929. |
| [61] |
Orthopaedic Society of Chinese Medical Association. Guidelines for prevention of venous thromboembolism in major orthopedic surgery in China. Chin J Orthop. 2016; 36(2): 7. |
2024 The Author(s). Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |