
Race and Gender Differences in Anterior Cruciate Ligament Femoral Footprint Location and Orientation: A 3D-MRI Study
Lihang Zhang, Tianwen Huang, Changzhao Li, Xing Xing, Diyang Zou, Dimitris Dimitriou, Tsung-Yuan Tsai, Pingyue Li
Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (1) : 216-226.
Race and Gender Differences in Anterior Cruciate Ligament Femoral Footprint Location and Orientation: A 3D-MRI Study
Objective:: The femoral tunnel position is crucial to anatomic single-bundle anterior cruciate ligament (ACL) reconstruction, but the ideal femoral footprint position are mostly based on small-sized cadaveric studies and elderly patients with a single ethnic background. This study aimed to identify potential race- or gender-specific differences in the ACL femoral footprint location and ACL orientation, determine the correlation between the ACL orientation and the femoral footprint location.
Methods:: Magnetic resonance images (MRIs) of 90 Caucasian participants and 90 matched Chinese subjects were used for reconstruction of three-dimensional (3D) femur and tibial models. ACL footprints were sketched by several experienced orthopedic surgeons on the MRI photographs. The anatomical coordinate system was applied to reflect the ACL footprint location and orientation of scanned samples. The femoral ACL footprint locations were represented by their distance from the origin in the anteroposterior (A/P) and distal-proximal (D/P) directions. The orientation of the ACL was described with the sagittal, coronal and transverse deviation angles. The ACL orientation and femoral footprint position were compared by the two-sided t-test. Multiple regression analysis was used to study the correlation between the orientation and femoral footprint position.
Results:: The average femur footprint A/P position was -6.6 ± 1.6 mm in the Chinese group and -5.1 ± 2.3 mm in the Caucasian group, (p < 0.001). The average femur footprint D/P position was -2.8 ± 2.4 mm in Chinese and - 3.9 ± 2.0 mm in Caucasians, (p = 0.001). The Chinese group had a mean difference of a 1.5 mm (6.1%) more posterior and 1.1 mm (5.3%) more proximal in the position from the flexion-extension axis (FEA). And the males have a sagittal plane elevation about 4–5° higher than females in both racial groups. Furthermore, for every 1% (0.40 mm) increase in A/P and D/P values, the sagittal angle decreased by about 0.12° and 0.24°, respectively; the coronal angle decreased by about 0.10° and 0.30°, respectively. For every 1% (0.40 mm) increase in D/P value, the transverse angle increased by about 0.14°.
Conclusion:: The significant race- and gender-specific differences in the femoral footprint and orientation of the ACL should be taken in consideration during anatomic single-bundle ACL reconstruction. Furthermore, the quantitative relationship between the ACL orientation and the footprint location might provide some reference for surgeons to develop a surgical strategy in ACL single-bundle reconstruction and revision.
Anatomical single-bundle reconstruction / Anterior cruciate ligament / Ethnicity / Femoral footprints / Gender / Orientation of ligament
[1] |
Brophy RH, Wright RW, Matava MJ. Cost analysis of converting from single-bundle to double-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37(4):683–687.
|
[2] |
Frank CB, Jackson DW. The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 1997;79(10):1556–1576.
|
[3] |
Gottlob CA, Baker CJ, Pellissier JM, Colvin L. Cost effectiveness of anterior cruciate ligament reconstruction in young adults. Clin Orthop Relat Res. 1999;367:272–282.
|
[4] |
Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 2008;359(20):2135–2142.
|
[5] |
Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries. Am J Sports Med. 2007;35(10):1756–1769.
|
[6] |
Kim TK, Phillips M, Bhandari M, Watson J, Malhotra R. What differences in morphologic features of the knee exist among patients of various races? A systematic review. Clinical Orthop Related Res. 2017;475(1):170–182.
|
[7] |
Biau DJ, Tournoux C, Katsahian S, Schranz P, Nizard R. ACL reconstruction: a meta-analysis of functional scores. Clin Orthop Relat Res. 2007;458:180–187.
|
[8] |
Freedman KB, D'Amato MJ, Nedeff DD, Kaz A, Bach BJ. Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med. 2003;31(1):2–11.
|
[9] |
Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH. Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3 to 5-year follow-up. Am J Sports Med. 2012;40(3):512–520.
|
[10] |
Marchant BG, Noyes FR, Barber-Westin SD, Fleckenstein C. Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med. 2010;38(10):1987–1996.
|
[11] |
Scheffler SU, Maschewski K, Becker R, Asbach P. In-vivo three-dimensional MR imaging of the intact anterior cruciate ligament shows a variable insertion pattern of the femoral and tibial footprints. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3667–3672.
|
[12] |
Luites J, Verdonschot N. Radiographic positions of femoral ACL, AM and PL centres: accuracy of guidelines based on the lateral quadrant method. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2321–2329.
|
[13] |
Colombet P, Robinson J, Christel P, Franceschi JP, Djian P, Bellier G, et al. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Art Ther. 2006;22(9):984–992.
|
[14] |
Yamamoto Y, Hsu WH, Woo SL, Van Scyoc AH, Takakura Y, Debski RE. Knee stability and graft function after anterior cruciate ligament reconstruction: a comparison of a lateral and an anatomical femoral tunnel placement. Am J Sports Med. 2004;32(8):1825–1832.
|
[15] |
Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA. Measuring the anterior cruciate ligament's footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2012;20(5):986–995.
|
[16] |
Araki D, Thorhauer E, Tashman S. Three-dimensional isotropic magnetic resonance imaging can provide a reliable estimate of the native anterior cruciate ligament insertion site anatomy. Knee Surg Sports Traumatol Arthrosc. 2018;26(5):1311–1318.
|
[17] |
Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med. 2006;34(8):1240–1246.
|
[18] |
Tsai TY, Liow M, Peng Y, Arauz P, Li G, Kwon YM. In-vivo elongation of anterior and posterior cruciate ligament in bi-cruciate retaining total knee arthroplasty. J Orthop Res. 2018;36(12):3239–3246.
|
[19] |
Biedert R, Sigg A, Gal I, Gerber H. 3D representation of the surface topography of normal and dysplastic trochlea using MRI. Knee. 2011;18(5):340–346.
|
[20] |
Eckhoff D, Hogan C, DiMatteo L, Robinson M, Bach J. Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop Relat Res. 2007;461:238–244.
|
[21] |
Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG. The axes of rotation of the knee. Clin Orthop Relat Res. 1993;290:259–268.
|
[22] |
Von Eisenhart-Rothe R, Bringmann C, Siebert M, Reiser M, Englmeier KH, Eckstein F, et al. Femoro-tibial and menisco-tibial translation patterns in patients with unilateral anterior cruciate ligament deficiency—a potential cause of secondary meniscal tears. J Orthop Res. 2004;22(2):275–282.
|
[23] |
Joseph AM, Collins CL, Henke NM, Yard EE, Fields SK, Comstock RD. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J Athl Train. 2013;48(6):810–817.
|
[24] |
Pfeiffer RP, Shea KG, Roberts D, Grandstrand S, Bond L. Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J Bone Joint Surg Am. 2006;88(8):1769–1774.
|
[25] |
Takazawa Y, Nagayama M, Ikeda H, Kawasaki T, Ishijima M, Saita Y, et al. Anterior cruciate ligament injuries in elite and high school rugby players: a 11-year review. Phys Sportsmed. 2016;44(1):53–58.
|
[26] |
Tsuda E, Ishibashi Y, Tsukada H. Incidence and internal risk factors of non-contact anterior cruciate ligament injury in female high school basketball players. Art Ther. 2013;23(10 suppl):e109–e110.
|
[27] |
Bram JT, Magee LC, Mehta NN, Patel NM, Ganley TJ. Anterior cruciate ligament injury incidence in adolescent athletes: a systematic review and meta-analysis. Am J Sports Med. 2021;49(7):1962–1972.
|
[28] |
Miranda DL, Rainbow MJ, Leventhal EL, Crisco JJ, Fleming BC. Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J Biomech. 2010;43(8):1623–1626.
|
[29] |
Pearle AD, Shannon FJ, Granchi C, Wickiewicz TL, Warren RF. Comparison of 3-dimensional obliquity and anisometric characteristics of anterior cruciate ligament graft positions using surgical navigation. Am J Sports Med. 2008;36(8):1534–1541.
|
[30] |
Dimitriou D, Wang Z, Zou D, Tsai TY, Helmy N. The femoral footprint position of the anterior cruciate ligament might Be a predisposing factor to a noncontact anterior cruciate ligament rupture. Am J Sports Med. 2019;47(14):3365–3372.
|
[31] |
Jordan SS, DeFrate LE, Nha KW, Papannagari R, Gill TJ, Li G. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am J Sports Med. 2007;35(4):547–554.
|
[32] |
Asagumo H, Kimura M, Kobayashi Y, Taki M, Takagishi K. Anatomic reconstruction of the anterior cruciate ligament using double-bundle hamstring tendons: surgical techniques, clinical outcomes, and complications. Arthroscopy. 2007;23(6):602–609.
CrossRef
Google scholar
|
[33] |
Steckel H, Musahl V, Fu FH. The femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: a radiographic evaluation. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):52–55.
|
[34] |
Edwards A, Bull AM, Amis AA. The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Part 2: femoral attachment. Knee Surg Sports Traumatol Arthrosc. 2008;16(1):29–36.
|
[35] |
Amis AA, Beynnon B, Blankevoort L, Chambat P, Christel P, Durselen L, et al. Proceedings of the ESSKA scientific workshop on reconstruction of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc. 1994;2(3):124–132.
|
[36] |
Reid JC, Yonke B, Tompkins M. The angle of inclination of the native ACL in the coronal and sagittal planes. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1101–1105.
|
[37] |
Illingworth KD, Hensler D, Working ZM, Macalena JA, Tashman S, Fu FH. A simple evaluation of anterior cruciate ligament femoral tunnel position: the inclination angle and femoral tunnel angle. Am J Sports Med. 2011;39(12):2611–2618.
|
[38] |
Guler O, Mahirogullari M, Mutlu S, Cerci MH, Seker A, Cakmak S. Graft position in arthroscopic anterior cruciate ligament reconstruction: anteromedial versus transtibial technique. Arch Orthop Trauma Surg. 2016;136(11):1571–1580.
|
[39] |
Gabr A, Khan M, Kini SG, Haddad F. Anteromedial portal versus transtibial drilling techniques for femoral tunnel placement in arthroscopic anterior cruciate ligament reconstruction: radiographic evaluation and functional outcomes at 2 years follow-up. J Knee Surg. 2023;36(13):1309-1315.
|
[40] |
Brophy RH, Voos JE, Shannon FJ, Granchi CC, Wickiewicz TL, Warren RF, et al. Changes in the length of virtual anterior cruciate ligament fibers during stability testing: a comparison of conventional single-bundle reconstruction and native anterior cruciate ligament. Am J Sports Med. 2008;36(11):2196–2203.
|
[41] |
Otsubo H, Shino K, Nakamura N, Nakata K, Nakagawa S, Koyanagi M. Arthroscopic evaluation of ACL grafts reconstructed with the anatomical two-bundle technique using hamstring tendon autograft. Knee Surg Sports Traumatol Arthrosc. 2007;15(6):720–728.
|
[42] |
Snoj Z, Zupanc O, Strazar K, Salapura V. A descriptive study of potential effect of anterior tibial translation, femoral tunnel and anterior cruciate ligament graft inclination on clinical outcome and degenerative changes. Int Orthop. 2017;41(4):789–796.
|
[43] |
Lee MC, Seong SC, Lee S, Chang CB, Park YK, Jo H, et al. Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Art Ther. 2007;23(7):771–778.
|
[44] |
Simmons R, Howell SM, Hull ML. Effect of the angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: an in vitro study. J Bone Joint Surg Am. 2003;85(6):1018–1029.
|
[45] |
Getelman MH, Friedman MJ. Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg. 1999;7(3):189–198.
|
[46] |
Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BJ, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–2370.
|
[47] |
Parkkari J, Pasanen K, Mattila VM, Kannus P, Rimpela A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: a population-based cohort study of 46 500 people with a 9 year follow-up. Br J Sports Med. 2008;42(6):422–426.
|
[48] |
Hantes ME, Zachos VC, Liantsis A, Venouziou A, Karantanas AH, Malizos KN. Differences in graft orientation using the transtibial and anteromedial portal technique in anterior cruciate ligament reconstruction: a magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc. 2009;17(8):880–886.
|
[49] |
Jamsher M, Ballarati C, Vigano M, Hofbauer M, Togninalli D, Lafranchi S, et al. Graft inclination angles in anterior cruciate ligament reconstruction vary depending on femoral tunnel reaming method: comparison among transtibial, anteromedial portal, and outside-In retrograde drilling techniques. Art Ther. 2020;36(4):1095–1102.
|
[50] |
Osti M, Krawinkel A, Ostermann M, Hoffelner T, Benedetto KP. Femoral and tibial graft tunnel parameters after transtibial, anteromedial portal, and outside-in single-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(9):2250–2258.
|
[51] |
Pascual-Garrido C, Swanson BL, Swanson KE. Transtibial versus low anteromedial portal drilling for anterior cruciate ligament reconstruction: a radiographic study of femoral tunnel position. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):846–850.
|
[52] |
Vermesan D, Inchingolo F, Patrascu JM, Trocan I, Prejbeanu R, Florescu S, et al. Anterior cruciate ligament reconstruction and determination of tunnel size and graft obliquity. Eur Rev Med Pharmacol Sci. 2015;19(3):357–364.
|
[53] |
Duffee A, Magnussen RA, Pedroza AD, Flanigan DC, Kaeding CC. Transtibial ACL femoral tunnel preparation increases odds of repeat ipsilateral knee surgery. J Bone Joint Surg Am. 2013;95(22):2035–2042.
|
[54] |
Hart A, Sivakumaran T, Burman M, Powell T, Martineau PA. A prospective evaluation of femoral tunnel placement for anatomic anterior cruciate ligament reconstruction using 3-dimensional magnetic resonance imaging. Am J Sports Med. 2018;46(1):192–199.
|
[55] |
Scanlan SF, Lai J, Donahue JP, Andriacchi TP. Variations in the three-dimensional location and orientation of the ACL in healthy subjects relative to patients after transtibial ACL reconstruction. J Orthop Res. 2012;30(6):910–918.
|
[56] |
Sadoghi P, Kropfl A, Jansson V, Muller PE, Pietschmann MF, Fischmeister MF. Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Art Ther. 2011;27(3):355–364.
|
/
〈 |
|
〉 |